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Abstract

With the expanding number of components provided on a single digital chip, verifi-

cation of digital designs is becoming a major problem. The more circuits one places on a

single chip, the greater the number of input/ouput combinations which need to be checked.

A paper by Barrow in 1984 discusses a Prolog-based hierarchical formal verification system

which he calls VERIFY. Barrow provides information on what VERIFY can and cannot

do, and on projected enhancements. He does not, however, mention how VERIFY actu-

ally performs the task of formal verification. This thesis will provide a description of one

possible implementation of the formal verification methodology described in VERIFY.
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A PROLOG-BASED SYSTEM FOR

HARDWARE VERIFICATION

I. Introduction

1.1 Background

In any design environment, the designer would like to know if his design really works

as expected. Did he build the product right? With Lhe expanding number of components

provided on a single digital chip, verification of digital designs is becoming a major problem.

The more circuits one places on a single chip, the greater the number of input/ouput

combinations which need to be che:ked.

In the Air Force Instititute of Technology (AFIT) School of Engineering, there is a

group of students whose educationlal emphasis is on the design of these Very Large Scale

Integrated (VLSI) circuits. These students would like to have better methods of ensuring

that a design is correct before it is sent to another agency for fabrication. A paper by

Barrow (1)in 1984 discusses a Prolog-based verification system which he calls VERIFY.

Barrow provides information on what VERIFY can and cannot do, and on projected

enhancements. He did not, however, mention how VERIFY actually performs the task of

formal verification. This thesis will provide a description of one possible implementation of

the concepts in VERIFY. Once a Prolog verification methodology is provided, the resulting

system could be integrated into a larger hardware design system for use by the AFIT

VLSI group. A VLSI design system containing verification tools will speed up the design-

fabrication cycle and ultimately result in both time and cost savings to AFIT.

1.2 Problem

In this thesis, hierarchical formal verification methods will be applied to the prob-

lem of verification of digital circuit designs. Formal verification methods attempt to prove

that a circuit's structural description implies a specified behavioral description. A circuit's
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strutural description is obtained through some synthesis process. At some lower level (i.e.,

gate, transistor) the behavior and structure are equivalent, forming the basis for deriving

behavior at higher levels. A high-level behavioral description can thus be inferred from a

circuit's structure. The approach in this thesis will be to derive a behavioral description

by combining previously verified modules hierarchically. Barrow's methodology requires

each module to be primitive or composed of other modules. A primitive module is a low-

level module where behavior and structure are the same. The module is described only

in a black-box sense of inputs, outputs, and specified behavior. Since a primitive mod-

ule's behavior and structure are equivalent, structure implies behavior, and all primitive

modules are verified. All other modules are composed of primitive modules and other

higher level modules. The non-primitive modules must fully specify their structure and

expected high-level behavior. All non-primitive modules are verified by first verifying the

module's components. If all components are successfully verified, then the behaviors de-

rived during the component's verifications can be substituted for those components while

deriving the module's behavior. Assuming this behavioral derivation process produces a

valid behavioral description, this derived behavioral description is now compared to the

module's specified behavioral description. Barrow elects to show that the derived behavior

and specified behavior are equivalent. If the behaviors are equivalent, it is also true that

structure, the derived behavior, implies behavior, the specified behavior.

This thesis advocates a specific method of verification of digital hardware design.

To understand the specific problem, a general understanding of digital design verification

techniques is required.

1.3 Summary of Current Knowledge

Approaches to Verification. The process of ensuring a digital circuit conforms to

its specification can be approached in three different ways: formal synthesis, simulation,

and formal verification. Formal synthesis is a design methodology which ensures that the

resulting implementation performs the high-level specified behavior. Such a process would

take a high-level behavioral description and automatically generate the proper implemen-

tation. Formal synthesis currently remains a lofty and unattainable goal. Simulation tries
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to ensure that the design meets the expected behavior, also known as the functional or

behavioral specification, by applying an appropriate number of inputs and "verifying" that

they produce the expected outputs. Most "verification" efforts to date use some form of

simulation and do not fully verify a circuit's behavior. Maruyama contends that the prob-

lem with simulation is that it "does not definitely ensure the conformance of design to

specifications" (12:22). This is the reason formal synthesis or formal verification must be

considered. Formal verification uses logic to verify a circuit. Each circuit to be verified will

consist of some high-level behavioral specification and some technology-dependent phys-

ical implementation. Formal verification verifies a circuit by showing that the physical

implementation, or structure, implies the high-level specification, or behavior. In logic, it

establishes that

Structure = , Behavior.

There are two basic ways to prove that this implication is valid. The first method is to

use predicate logic to perform a step-by-step formal proof of this implication. The second

method, which is used by Barrow, is to logically determine that the behavior and structure

are equivalent.

If Structure * Behavior then, by definition,

Structure #- Behavior and Behavior = Structure.

The systems used to represent behavior and structure and the methods used to prove

that, directly (implication) or indirectly (equivalence), structure implies behavior, provide

the major differences between formal verification methodologies. It should be noted that

Barrow's VERIFY could be set up to prove only that structure implies behavior; however,

Barrow chose to use Prolog to implement his methodology. Prolog's operation is based

on pattern-matching, and pattern-matching can, and is, exploited to make equivalence de-

termination much easier than implication proving. The equivalence determination process

will be explained in great detail in the Program Development chapter.

Formal Verification Methodologies. The majority of formal verification research

appears to be coming from the United Kingdom, and, in particular, from Cambridge
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University. Gordon (8:2) feels that for formal verification to be possible for real systems,

a verification system must provide both a high-level mathematical formalism for writing

specifications, and tools for mechanizing the proof of correctness. Gordon admits that

VERIFY contains these necessary qualities, but he advocates the use of predicate logic to

both specify and verify circuits. Gordon uses a predicate logic system called Higher-Order

Logic, or HOL.

Gordon has provided a defense of the use of HOL for formal verification (9). In that

discussion, examples are provided which show how HOL can be used to specify a circuit's

black-box behavior, or specification, by imposing constraints on the inputs and outputs.

Then, given one possible physical implementation of the device, the physical implementa-

tion can be represented logically by another group of constraints on the inputs, outputs,

and internal connections. The specifications and implementations provided by a user are

expressed as a function which is composed of constraints specified as normal predicate

logic statements consisting of quantifiers, propositions, and predicates. This representa-

tion can be classified as the "definitional method" as presented by Clocksin (4:63-64),

except predicate logic constructs are used as opposed to Prolog syntax. "To verify that

the implementation correctly implements the specification, it must be proved that if the

inputs and outputs satisfy the constraints imposed by the implementation, then they also

satisfy the specification" (9:163). Notice that the implementation must only imply the

specification and not be strictly equivalent. This may allow the implementation actually

to provide more functionality than the specification. HOL actually performs a formal proof

of the implication. This implication is proven in HOL through exhaustive simulation for

all inputs (this would show equivalence) in simple cases, by expansion of library compo-

nent definitions, and even by mathematical induction. The process is comparable to a

hand-written formal proof. HOL also provides capabilities for dealing with time (9:169).

Barrow's VERIFY provides no methods for dealing with time or performing mathematical

induction (1:488-489).

Barrow's modules allow circuits to be verified hierarchically by verifying lower level

modules and keeping them in a library for use by larger systems. Using this structural

hierarchy to aid in design verification is essential to achieve verification of circuits which
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contain more than basic elements. Hwang (11) also uses hierarchy to verify the correctness

of finite-state machines. Hwang considers a module to consist of an implementation part

and a specification part. The specification is a description of the expected behavior. The

implementation can be further divided into the following categories:

1. Interior node module - a module composed of submodules, each containing a speci-
fication and implementation.

2. Leaf node module - a set of net lists of elementary gates and latches obtained by
some synthesis process.

3. Primitive module - a module which need not be verified, so it can be assumed to
satisfy the specification. (11:410)

Hwang argues that most leaf nodes can be modelled as finite state machines and

presents a method to verify designs hierarchically. He shows that a finite-state machine

representation of the implementation satisfies the finite-state machine repro..!ntation of

the specification if and only if every input sequence applied to a specific state in both the

specification and implementation machines results in the same output sequence in both

the specificat'on and implementation machines (11:411).

The methodologies of Gordon, and Hwang are viable alternatives, but Barrow's VER-

IF -A methodology will be explored in this thesis. HOL provides greater flexibility in logic

specification, time representation, and proof mechanisms, but requires a learning curve

which precludes a normal AFIT thesis cycle. Hwang's methodology is very similar to

Barrow's, but provided no guidance on a possible implementation. Barrow's VERIFY is

implemented in Prolog, which is readily available at AFIT, and is the current required

language for the introductory Artificial Intelligence course. The apparent replication of

Barro-'s VERIFY by Brezocnik et al. (3) and Grabowiecki et al. (10) and the informa-

tion provided by these efforts added to the viability of a system such as VERIFY.

One should be cautioned that Barrow's VERIFY has limits. The most critical lim-

itation is the lack of a method for temporal representation. Even given this limitation

many types of circuits can be verified, and, in the process of verifying those circuits, the

methods to provide temporal representation can be studied. This thesis provides a Prolog
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implementation of Barrow's formal verification methodology, and no time will be devoted

to the determination of a possible method for temporal representaion.

1.4 Approach

The AFIT VLSI group currently "verifies" module corrrectness through simulation.

As mentioned above, simulation cannot truly verify module correctness. Some method for

formal verification is required. Prolog enables a circuit to be described behaviorally, and

also provides predicate-logic constructs for formal verification. Also, Prolog can be devel-

oped in a PC environment, which allows rapid prototyping. Barrow has a nice methodology,

but will it really work in practice? The need for a formal verification system, Barrow's

methodology, and the easy access to Prolog all played a role in the approach utilized in

this thesis.

The goal of this thesis was to use Prolog to develop a prototype of Barrow's ver-

ification methodology, remembering that the ultimate goal would be to provide a de-

sign/verification system to the AFIT VLSI group. The approach was to build the pro-

totype by first verifying a simple combinational logic circuit and then move to the real

problem of verifying a sequential circuit. An Exclusive-OR gate was first verified using a

Boolean Expansion algorithm created by CPT Dukes (6:39-43). Next Barrow's counter-

circuit example was attempted. This attempt proved successful and provided the basic

prototype structure to be used for further research. At that point, only modules composed

of primitive submodules could be verified. To have a true hierarchical verification system,

one would need to provide verification to any depth. It was here that Barrow's exploita-

tion of hierarchy was discovered. Barrow fully verified each submodule in the process of

verifying a module. This required every module to be fully specified both behaviorally and

structurally. Once a submodule was verified, the submodule's derived behavior (and/or

state) could be substituted for the submodule's output (and/or next state) when deriv-

ing a module's behavior. This would make all previously verified submodules appear to

be primitive, since a simple substitution would be made. A full-adder module containing

three levels of structure was verified to show this kind of hierarchical verification. The

full-adder verification required the use of a mainframe version of Quintus Prolog due to
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the small memory model of PROLOG-1. A PC version of Quintus Prolog will be used in

future research.

Once it was shown that a sequential circuit and a module consisting of more than two

structural levels could be formally verified, the work on this thesis turned to an explanation

of just how this was accomplished. AFIT now has a working prototype to build a lbrary

of formally verified circuit modules.

1.5 Organization of Thesis

In the chapters to follow, the prototype developed to perform formal verification will

be presented. In the rest of this thesis, the prototype will be identified as AFIT-VERIFY.

An introduction to Prolog concepts is included to demonstrate the types of constructs

required to use and further develop AFIT-VERIFY. The formal verification methodology

of Barrow and its implementation, AFIT.VERIFY, are explained in detail. This discussion

also includes an example of a module description which is used to verify a circuit. Next,

the actual development of AFITVERIFY is discussed. The body of the thesis concludes

with a summary of the results and recommendations for further development. Appendix

A provides a listing of all code developed for AFITVERIFY, and Appendix B contains

some sample verification runs using PROLOG-1 and Quintus Prolog. The sample runs

provide a flavor of the type of processing required to verify even small circuits. The runs

also contrast the capabilities of PROLOG-1 and Quintus Prolog.
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II. Introduction to Prolog

2.1 Introduction

To achieve a full understanding of the subsequent chapters, which discuss the imple-

mented code, one must have some basic understanding of Prolog and how it works. This

chapter will explain how Prolog differs from traditional languages such as PASCAL, it

will explain how a Prolog program is created, and it will discuss the capabilities of Prolog

which make it appropriate for formal verification.

Artificial Intelligence programmers should be well-versed in both Lisp and Prolog

(2:vii-ix). Languages like PASCAL are how-type or procedural programming languages.

The programmer must specify how a specific procedure is to be accomplished. Some

believe Lhat Lisp is the "champion" of the how-type languages. Prolog, on the other hand,

is a what-type or declarative language. In essence, one states logically what needs to be

dyne and Prolog does it. At least it appears that way. A note of caution is due here.

"Plentiful experience and devotion to conventional procedural programming, for example

in PASCAL, might be an impediment to the fresh way of thinking Prolog requires"(2:xii).

Prolog, which stands for PROgramming in LOGic, is rooted in mathematical logic.

In particular, the syntax of Prolog is first-order predicate logic written in Horn clause

form (2:61). A Horn clause is a logical implication with no more than a single atom as

consequent. For example:

A 4= Bi& ... &B,,

In this case, an atom is meant to be some indivisible concept. The level of indivisibility

depends on the level of abstraction used to describe a particular problem.

Clocksin and Mellish (5:240-244) created a Prolog program to convert a first-order

predicate calculus formula into clause form. The clause form produced by Clocksin and

Mellish is not Horn clause form, but a mechanical process exists to convert the Clocksin and

Mellish clause form into Horn clause form. This process requires redefining an atom as the

negation of another atom. Then the redefined atom can be moved across the implication.

For example, given the following clause form,
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A V B D&E,

and the fact that

C ' B,

the resulting Horn clause would be the following:

A .-- C&D&E.

Although this mechanical process is nice to have, it is generally not used. Most problem

statements can be manipulated and placed in Horn clause form. Using the Horn clause

form allows Prolog to mechanically prove user-supplied theorems, by using the resolution

principle introduced by Robinson (13).

A complete understanding of mathematical logic or the theory ".ehind resolution is

not required to create some very powerful programs using Prolog. The basic mechanisms

of Prolog are pattern matching, tree-based data structuring, and automatic backtracking.

Prolog is known as a goal-directed language. This is "becatise Prolog accepts questions as

goals that are to be satisfied" (2:7). This will be made much clearer in the examples to

follow.

2.2 Prolog Syntax

Prolog has only a single data object, the term. A term is either a constant, a variable,

or a structure. A constant can be either a number or an atom. An atom is any sequence

of characters, except control characters, which begins with a lower case letter. (Atoms

beginning with an upper case letter must be enclosed in single quotes.) A variable must

begin with an upper case letter or the underline character. The underline character, -,

when used alone, is known as the anonymous variable. The anonymous variable is used

when its value is irrelevant. It can be thought of as a "don't care" value. Examples of

atoms and variables appear in Table 2.1

"A structure is composed of an atom, called the principal functor, followed by a

sequence of terms called components of the structure" (7:2-6). Structures are storcd as
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Table 2.1. Prolog atoms vs. variables

Atoms Variables
a A

an..Atom Var
'an-Atom' A-variable
'Prolog- 1' VARI

trees with the principal functor being the root and the components as the offspring. Any

compoi-'nt which is also a structure appears as a subtree under the principal functor. For

example, the structure triangle(point (1,1) ,A,point(2,3)), which represents a family

of triangles containing the points (1,1),(2,3), and some unknown point, A, would be stored

as shown in Figure 2.1.

triangle

z I '\11
point A point

1 1 2 3

Figure 2.1. Triangle structure as seen by Prolog.

The following structure,

parent (tombob),

consists of the principal functor parent and the two components tom and bob which, in

this case, happen to be atoms. The above parent structure will be used to explain how

one can use Prolog in a declarative manner to solve problems.

The family relation problem is a classic introductory problem in Artificial Intelligence

and especially in Prolog. The structure parent (tom,bob) means Tom is the parent of Bob

and, in Prolog, is called a fact. As with other programming languages the atoms parent,

tom, and bob mean nothing in particular to Prolog; the programmer provides the semantics.
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Prolog merely recognizes the pattern parent(tom,bob). One can assert many such facts

to represent the family tree in Figure 2.2.

pam 

G

bob i

:ann 

pat

Figure 2.2. Sample Family Tree.

parent(pam,bob).
parent (tom,bob).
parent(tom,liz).
parent (bob,ann).
parent(bob,pat).
parent (pat,j im).

These facts would constitute a very simple Prolog program consisting of six clauses. After

loading the program one could ask "Is Bob the parent of Pat?" by typing the question

?- parent(bob,pat). ( ?- is the Prolog prompt)

Prolog would find this asserted fact and answer yes. One could also ask "Who is the

parent of Bob?" by typing the question
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?- parent(X,bob).

Prolog would then answer

X z pam,

and, if Prolog is told to provide more answers ("y" in Prolog-1 and ";" in Quintus Prolog),

it would reply

X - tom,

and, if more answers are requested, Prolog would reply

no.

Granted, this may not seem useful to a non-database programmer. One might think

that if he has to provide the program with all the facts to begin with, then he really doesn't

need the program. It should be noted that Prolog can be viewed as a relational database,

and the programs written are just queries to that database. This view of a program would

be fort. Yn to most functional programmers. AFITVERIFY was developed using Prolog's

declarati ; programming style. The resulting code shows more resemblance to a standard

language than to a database query language due to Prolog's added deductive capabilities

and flexible query mechanisms.

Prolog clauses come in three varieties: facts, rules, and questions. A Prolog clause

consists of the head and the body. The head and body are separated by the - operator.

For example:

offspring(Y,X) :- head
parent(X,Y). body

The :- operator represents the implication arrow, -#. So, the Prulog clause really

means that if the body is true, then the head is true. The body is a list of goals separated

by commas (logical AND) or semicolons (logical OR), and the head provides the pattern

to be searched for by Prolog. A fact is something that is always true, which is represented
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by a clause with an empty body. A question only has the body, which is represented by a

clause with an empty head. A rule declares that something (the head) is true provided a

given condition (the body) is true (2:13). This can be shown by Table 2.2 and the following

example.

Table 2.2. Prolog clauses.

Form Type
H 4- fact
4--T question

H 4- T rule

Given the six previously defined parent facts, one could now create a grandparent

rule. A grandparent is a parent of a parent. In Prolog, all variables are assumed to be

universally quantified, so logically stated,

for all X and Y,

X is a grandparent of Y if
X is a parent of Z and
Z is a parent of Y.

This is easily stated in Prolog as:

grandparent(X,Y) :-

parent(X,Z),
parent(Z,Y).

Now, if one asks the question grandparent (X,pat), Prolog will respond with

X = paN,

and then, if more answers are required,

X = tom.
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One can see that even though no grandparent facts exist, using the grandparent rule

one can derive all grandparent-grandchild relationships by using the question

?- grandparent(X,Y).

The previous example is carried out in much more detail in Bratko (2). Other rules

about families illustrate some subtle problems. A sister is a female with the same parents

as another sibling. This logic results in a girl's being her own sister. Prolog looks as

if it does so much (and it does) that a programmer can begin to believe that Prolog is

thinking and forget to think for himself. Prolog simply goes through the database searching

for possible instantiations of variables to solve a user-provided goal. The search can be

speeded up by reducing the search space through the introduction of cuts, which allow a

goal to be satisfied only once with the same instantiation. This is when programming in

Prolog gets dangerous, because some solutions have been eliminated from the search space.

The programmer is now telling Prolog how to get a solution as opposed to what solution

is needed. As much as possible, one should use the strengths of Prolog and its what-type

capabilities.

Another major feature of Prolog, which is necessary to tackle problems of any signif-

icance, is recursion. A simple example of this is the predecessor relation (2:15). A parent

is a predecessor. So is a grandparent, great-grandparent, great-great-grandparent, A

predecessor clause could be defined as,

predecessor(X,Y) -

parent(X,Y).
predecessor(X,Y) :-

parent(X,Z),
parent(Z,Y).

predecessor(X,Y) :-
parent(X,Z),
parent(Z,A),
parent(AY).
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and predecessor clauses could be added to a sufficient depth to cover all cases in the family

tree. But isn't a predecessor more simply defined as either a parent or a predecessor of a

parent? This is easily written in Prolog as

predecessor(X,Y) :-
parent(X,Y).

predecessor(X,Y) :-
parent(X,Z),
predecessor(Z,Y).

This new definition will cover predecessors to any depth and demonstrates the power

of Prolog to encapsulate a large search problem into a ',ew simple clauses.

It should be noted that multiple clauses with the same principal functor and number

of components (arity) perform the logical OR function of the clause bodies. The sepa-

rate goals of the two clauses could appear in a single predecessor clause separated by a

semicolon, as follows:

predecessor(X,Y) :-
parent(XY)

(parent (X,Z),
predecessor(ZY)).

However, the use of separate clauses enhances readability and is the recommended

Prolog programming practice. Prolog merely searches for the matching clause when trying

to satisfy a goal. If the first clause fails, Prolog jnst moves to the next matching clause.

This also brings up the point that ordering of clauses plays a role in the efficiency of the

search. The clauses which will be satisfied most frequently in a program should be placed

at the top of the database (i.e., should occur first in the program).
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2.3 Summary

Although these examples are simple, they do provide the basis for an understanding

of Prolog. The most important concepts to grasp are that rules are simply stated as, "This

pattern holds if the following goals can be proven". Since the ultimate goal of this research

is to verify large circuits hierarchically, extensive use of recursion will be required in the

development of the system described in this thesis.

The final point to make about Prolog concerns modification. In the chapters to follow,

the code should be explained in sufficient detail to allow modification without requiring a

major revision. Generally, to handle a new case, one just adds another clause. This is quite

acceptable, and this type of programming lends itself to follow-on efforts. An interested

person can take the code developed in this effort and simply add new clauses to cover the

types of designs of interest to future research.

This chapter was not intended to provide a thorough tutorial on Prolog, but simply

to allow the reader to understand the basic concepts. The use of cuts and ordering of

clauses are explained in some detail in the references (2, 7). As with most languages, the

best way to get an understanding of Prolog is just to write some programs.
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III. VERIFY

3.1 Introduction

The thrust of this thesis is to provide a Prolog implementation of the formal ver-

ification mpthodology described by Barrow (1). Barrow developed a program in Prolog

called VERIFY which tries to prove the correctness of digital designs (1:437). The key

principle underlying VERIFY is that, "given the behaviors of components of a system and

their interconnections, it is possible to derive a description of the whole system" (1:445).

His program is based on the assumption that a design is "comprised of modules, organized

hierarchically, and modeled as finite state machines"(1:440). The modules are described

by stating the inputs, the expected outputs, and any internal state information (1:440).

These statements make up a structural description. VERIFY takes the information in the

structural description and derives a behavioral description (1:450). Using the inherent pat-

tern matching capabilities of Prolog and some added mathematical techniques, VERIFY

then tries to prove the equivalence of the derived behavioral description and the speci-

fied behavioral description. The mathematical techniques include methods for algebraic

manipulation, simplification, canonicalization (i.e., putting equations in a normal form for

easier comparison), evaluation, and case analysis (1:452-454). If the derived behavioral

description and the specified behavioral description can be proved to be equivalent, then

the module specification is verified; however, there is still the possibility that the original

module specification is incorrect. That is a completely different problem which Barrow

doesn't attempt to address (1:445).

Brezocnik et al. (3) and Grabowiecki et al. (10) have reported successful replication

of Barrow's process. None of these "VERIFY" efforts provided significant detail on how to

replicate the verification code. An actual implementaion of the verification methodology

described in VERIFY (1) is the product of this thesis. Barrow's methodology is best

understood by the presentation of an example. The counter-circuit example given by

Barrow (1:440-445) will be discussed using the Prolog clauses as developed for this thesis.
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3.2 Module Structure

Given the counter-circuit in Figure 3.1, a Prolog description for the counter is the

following:

counter CtrI' ir.

mux switch inl inO
out:=if(switch,inl,inO)

out

~in

contents := in
out := contents

out

out := 1 + in

outI

count := if(ctrl,in,count + 1)

out :- count

- out

Figure 3.1. Barrow's counter-circuit example.
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/* Counter.pro

1* Module definitions for the counter example
1* in Barrow's VERIFY article.

/* ---------------- INCREMENTER --------------------

module..name(inc).

port (inc,inCAnlnc) ,n,intee)
port (inc ,out CAnInc) ,output, integer).

/* Behavior Specification */

output..eqn~inc, outCAnlnc) :- 1 + in(Anlnc)).

/----- ----- MULTIPLEXER --------------------

module..name(mux).

port (mux,imO (AMux) ,input ,integer).
port (mux, ml (AMux) ,inu,integer).
port (mux,switch(AMux) ,input ,boole).
port (mux ,out (AMux),tu,inee)

/* Behavior Specification *

output..eqn(mux, out(AMux) Uif(switch(AMux),

inl(AMux),
inOCA~ux))).
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/* -- -- --- -- -- --- REGISTER -- - - - - - - -

module..name(reg).

port Creg, inCAReg) ,input ,integer).
port (reg,out (AReg) ,output ,integer).

/* Behavior Specification */

state..of (reg,contents (AReg),inee)

output..eqn(reg,out(AReg) :- contents(AReg)).

state..eqn(reg,contente(AReg) :- inCAfteg)).

/* ----------------- COUNTER ---------------------

module..name (counter).

port (counter, in(ACounter) ,input ,integer).
porcute, ctrl (ACounter) ,input ,boole).
port~counter,outCACounter) ,output,integer).

part(counter,muxA(ACounter) ,mux).
part(counterregA(ACounter) ,reg).
part (counter,incA(ACounter) ,inc).

connected(counter,ctrl(ACounter) ,switch(muxA(ACounter)))-
connected(counter, inCACounter) ,inl (muxACACounter))).
connected(counter,out(muxA(ACounter)) .in(regA(ACounter))).
connected(counter,out(regA(ACounter)) ,in(incA(ACounter))).
connected(counter,out(incA(ACounter)) ,ino(muxA(ACounter))).
connected(counter out (regACACounter)) ,out(ACounter)).

/* Behavior Specification */

state-.of (counter ,count (ACounter) ,integer).
state-map(counter,count(ACounter) ,contents(regA(ACounter))).

output..eqn(counter,out(ACounter) :=count(ACounter) ).

state-.eqn(counter, count(ACounter) := if(ctrl(ACounter),
inCACounter),
count(ACounter) + 1)).
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The counter-circuit comprises a register (reg), a multiplexer (mux), and an incre-

menter (inc). Each module must contain its own module-name which uniquely identifies

each module to be verified or later used as a component for a larger module. Each module

hais ports which are associated with the specific module. In the port clause,

port (Module,Name, I/0 ,Type),

Name uniquely identifies each input/output port for the module with module.name, Module.

I/0 distinguishes between input/output ports and the signal type (boole,integer,...) is

identified by Type.

The current definition of a 'primitive' module is one which contains no part clauses.

The part clause,

part (Module, Name, SubModule),

is the method to hierarchically define the Module. The Name attribute is the identifier for

a specific SubModule. Name is supplied as SubModuleA(AModule), SubModuleB(AModule),

.... SubModules are verified prior to deriving the behavior of Module. Using Prolog vari-

ables (AModule) as part of the Name specification provides a direct method of instantitiating

each SubModule behavior as part of the Module behavior. This provides for Barrow's sub-

stitutional model for deriving behavior. A Module's Submodule' s derived behavior is

merely substituted for the SubModule's output at the appropriate time in the process of

deriving the Module's behavior.

Deriving a Module' s behavior makes use of the part, connected, state-of, state-map,

output.eqn, and stateeqn clauses. The process of deriving behavior and state will be

discussed in the Program Development chapter. The connected clause,

connected(Module ,Source,Destination),

describes all interconnections of a Module. Each module connection is specified from

Source to Destination with SubModule identifiers included to provide the substitutional

method for deriving behavior previously mentioned.
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Each output of a module is specified in an outputeqn clause,

output-eqn(Module, Output := SpecifiedBehavior),

which provides the Specified.Behavior to be compared to the behavior derived from the

structural specification (i.e., port, part, and connected clauses).

At this point in the AFITVERIFY development, and, as reported by Barinw. only

modules with internal feedback loops broken by state variables (typically registers) (1:450-

451) have been considered. The dotted line in Figure 3.1 represents this conceptual break.

The state-of, state-map, and state.eqn clauses allow state specification. The state-of

clause,

state-of (Module, State ,Type),

simply identifies each state variable to the external environment. This allows the specifi-

cation of Module as a black box. The state.map clause,

state-map(Modtle,S ate,InternalS ate),

shows the actual internal component, Internal.State, which contains the actual State.

Again, State and Internal.State contain variables to allow the derivation of the expected

next state via the substitutional process. In the state-eqn clause,

state-eqn(Module,State := Next-State),

Next-State is now the specified behavior to progress to the next State. Next-State is

compared to a derived next state to determine equivalence.

3.3 AFITVERIFY Methodology

AFITVERIFY is invoked by typing

verify(Module)
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after loading the appropriate Module descriptions and code (see Appendix 2 for sample

runs). The verify clauses serve as a main program. First, the verify clauses recursively

verify each Sub~odule. If all SubModules are successfully verified, the behavior of each of

Module's outputs is derived and then compared to the specified behavior for each output.

A derived-behavior(Module, Output ,Derived.Behavior) fact for each equivalent output

is asserted into the database for later use as a verified Derived-Behavior for the Module.

If all derived behaviors and specified behaviors are equivalent (a Module with no state is

verified at this point), all next states are derived and compared to their specified next states.

Each equivalent next state is asserted as a next-state(Module,State,Next-State) fact

into the database for later use as a verified Next.State for the Module. If this is successful,

the module is verified and a verified(Module) fact is asserted into the database for future

use by other modules. Various issues of what to assert into the database, when to assert,

and how to assert will be discussed in the Program Development chapter.

3.4 Summary

Barrow provided a methodology for performing hierarchical formal verification. This

included an algorithm and a specific method to provide behavioral and structural speci-

fications. The algorithm: verify a module's components; derive the behavior of all out-

puts/states from the module's structure; and determine if each derived output/state is

equivalent to its specified output/state, is followed by AFIT.VERIFY. Barrow's specifica-

tion syntax is also strictly adhered to when possible. This specification syntax provides

Prolog with specific facts about a module. AFITVERIFY then performs one possible

implementation of Barrow's algorithm on these module facts.

3-7



IV. Program Development

4.1 Introduction

Based on Barrow's work (1), AFIT.VERIFY was developed in three major portions.

The first section recursively verifies a module's components. The next section derives

a behavioral description from the provided structural description, and the final section

determines the equivalence of the derived and specified behavioral descriptions. Before

explaining what each portion of code provides, some comments on the development envi-

ronment and methodology will be disussed.

4.2 Development Environment

The majority of code was developed on a PC using PROLOG-1. This caused some

minor modifications to Barrow's naming conventions since the clause, state, has special

meaning to PROLOG-1. The clause state-of is used in place of Barrow's state clause.

The PC environment allowed for rapid prototyping by using Sidekick to make coding

changes and then popping back into PROLOG-1 to run the improved code.

PROLOG-1 has some shortcomings, the most significant being insufficient stack

space. This was realized during the verification of Barrow's counter-circuit example (1 .440-

445). During the process of determining the equivalence of the sum output's specified and

derived behaviors, the stack space was exceeded. This presented two alternatives: make

the Boolean expansion code (6) more efficient, or move to a larger system. Work contin-

ued on the AFIT Microvax system Cub using Quintus Prolog since it became apparent

PROLOG-1 would not be sufficient for larger modules.

The counter-circuit example was verified on Cub, but not without some minor porta-

bility problems. Quintus Prolog has no not clause defined. (In Prolog, not is understood

to mean that no clause of the specified type exists. The goal, not parent(X,Y) succeeds

when no parent clauses appear in the database.) More imporcantly, the operator prece-

dences in Quintus Prolog run from 0 to 1200 but only from 0 to 255 in PROLOG-1. Also,

the clause module, has system significance to Quintus; therefore, module was changed to

module-name. Finally, Quintus Prolog provides better error-checking mechanisms. One
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of these mechanisms checks for the redefinition of a clause when a new file is loaded. A

programmer cannot redefine clauses in separate .pro files unless a multif ile directive is

included for each clause which needs to be redefined. Unless the AFITNERIFY code is to

be kept as one huge .pro file, redefinition of clauses in separate files would be required, since

each new module would require redefinition of the modulename, part, port, ... clauses.

The multif ile directives are included in the qops.pro file. Two separate operator files,

qops.pro (Quintus) and ops.pro (PROLOG-1), were created to provide a mechanism for

system portability. Additional operator files can be created for use on other Prolog sys-

tems. In fact, follow-on work is expected to be completed on a PC version of Quintus

Prolog, and discrepencies between the PC and mainframe versions should be handled in

the operator files.

4.3 Verify

The first goal was to verify a simple combinational circuit, like an Exclusive-OR

gate comprising NAND gates. This proved to be simple. The next step was to verify a

sequential circuit, one which contained a single state variable. The example demonstrated

by Barrow and implemented in AFITVERIFY was a simple counter-circuit.

This task was not trivial and introduced many new concepts to the design. After

studying a similar verification attempt by Brezocnik et al. (3), it finally became apparent

that a modular and easily expandable design should be used. This required a relook at

the code used to verify the combinational circuit.

The first attempt at a verification procedure looked like this:

verify(Moduls) :-
verify.components (Module),
derive.behavior(Module ,out (X) ,Derived.Behavior),
equal-behaviors (Module,Derived.Behavior),
asserta(verified(Module)).

In the spirit of declarative programming, Prolog was told to perform the three parts

of Barrow's VERIFY algorithm: verify the components, extract a behavior from the struc-
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ture, and then compare the extracted behavior to the specified behavior. This approach

works well for a combinational circuit with a single output, but what about a sequential

circuit or circuits with multiple outputs? Since Prolog is, in essence, a relational database,

it was decided to use the database capabilities to provide and update the appropriate state

information. This is a variation of the technique used by Grabowiecki et al. (10:40). All

parts of the program would have access to the asserted facts.* It was also determined that

the verify clauses would operate as drivers. In so doing, the verify clauses would be

required to handle the different type8 of modules to be verified. This required a different

verify clause for each type of module (i.e. previously verified, primitive, no state, ... ).

This also created the need for helper procedures to generate and verify multiple outputs,

states, and components.

The different types of modules to be verified are handled by the following verify

clauses:

verify(Module) :- /* previously verified module */
verified(Module),

vriteln( ['>>' ,Module,' previously verified >>').
verify(Module) :- /* primitive module with no state */

not part(Module,.,.),
not state-eqn(Module,.),

asserta(verified(Module)),
writeln([ ' >',Module,' primitive (needs no verification) >')).

verify(Module) :- /* primitive module with state */
not part(Module,.,.),

asserta(verified(Module)),
writeln([>'>' ,Module,' primitive (needs no verification)>>']).

verify(Module) :- /* non-primitive with no state */
not state.eqn(Module,.),
writeln(['>>> Attempting to verify ',Module,'>>']),
verify.components (Module),

deriveand.equate.behaviora(Module),
asserta(verified(Module)),
writeln(['<<< Success! Behavior of',Module,'meets its specification.']).
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verify(Module) :- /* non-primitive with state */
vriteln(['>>> Attempting to verify ',Module, '>>>']),
verify-components (Module),
.,

derive.andequate.behaviors (Module),
derive.and.equate.states (Module),
asserta(verified(Module)),
writeln(['<<< Success! Behavior of',Module,'meets its specification.']).

These five clauses should handle any type of Module to be verified. Some decisions

were made about primitives which would impact other portions of the code. For a primitive

module, behavior is equivalent to structure, or more importantly, the derived behavior is

the specified behavior. At this time, no derived-behavior (Module, Output ,Behavior) or

next-state(Module,State,Nextstate) facts are asserted into the database for primitive

modules since this information can be obtained directly from the output-eqn(Module,

Output := Behavior) and state-eqn(Module, State := Nextstate) clauses. If it is

later decided that the derived-behavior and next.state clauses should be asserted, then

a clause can be removed from the derive-behavior clauses (Rule 2A). A similar decision

is required for the asserta(verified(Module)) for a primitive Module. With only one

possible verified clause per Module, the space required seems minimal for the time sav-

ings. The time savings can be achieved due to the use of cuts (!) in the verify clauses.

The cuts remove the need for resatisfaction of goals like part (Module,_, _) as Prolog works

its way through the clauses.

The helper clauses derive-and-equate-behaviors, derive.and-equatestates, and

verifycomponents allow the verify clauses to hierarchically verify each component of

a Module and ensure that all outputs and states are equivalent. Since the fail clause

always returns false, the second clauses in the helper procedures check that the first

clause did the appropriate work. The second clauses in derive-and-equate-behaviors

and derive.and-equate.states count the number of derived and specified behaviors. If

the numbers are equal, then the first clause derived and equated al the outputs/states.

This assumes that the procedures determining the equivalence of the derived and specified

behaviors are correct. If these clauses fail, then cleanup can be performed by retracting

the asserted clauses. The verify-components clauses create a list of the module's com-
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ponents (parts) using set.of and checks that a verified fact has been asserted using

parts-.vrif ied. It should be noted that Quintus Prolog has a system-defined clause

setof (ObJ acts, Predicate, List) which returns the List of the set of Objects, which

satisfy the Predicate. The behavior of setof was not as expected. Since PROLOG-1

has no setof clause defined, the clauses set-.of, f ind-.all, and length-.of are provided in

both operator files to ensure portability. The helper procedures are as follows:

derive.and..equate..behaviors (Module) : -
derive-.behaviors (Module ,Output,Derived-.Beh),
equal.behaviors(Module,Output ,Derived..Beh),
asserta(derived-behavior(Module,Output ,Derived_.Beh)),
fail.

derive-.and..equate..behaviors (Module):-
set..of(Outputs,output.eqn(Module,Outputs := _.) ,Outlist),
length(Outlist ,Outnum),
set-.of (Outputs ,derived-.behavior(Module,Outputs,-.) ,Derlist),
length(Derlist ,Dernum),
Outnum =z Derrium.

derive-.and..equate..behaviors (Module)-
retract (derived-.behavior (Module, -,.)),
fail.

derive..and..equate..states (Module)-
derive-.states (Module ,StateNext.State),
equal-states (Module,State,Next.State),
asserta(next..state(Module,State,Next.State)),
fail.

derive.and..equate..states (Module):-
set.of (States ,state..eqn(Module,States :W -),Statelist),
length(Statelist ,Statenum),
set-.of (States ,next.state(Module,States,_),Derlist),
length(Derlist ,Dernum),
Statenum =:a Dernum.

derive-.and.equate.states(Module)-
retract (next-.state (Module,..,_),
fail.

verify-.components (Module):-
part(Module,-.,Component),
verify(Component),
fail.
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verify.components (Module) :-
set.of (Component ,part (Nodule, -,Component),Complist),
p rts.verified(Complist),
vriteln(['component list is ', Complist]).

parts.verified(O ).
parts.verified([ComponentlTail]) :-

verified(Component),
parts.verified(Tail).

This portion of the code should require no foreseeable modifications when AFIT.VERIFY

is expanded.

4.4 Deriving Behavior

"One key principle underling VERIFY is that, given the behaviors of components of

a system and their interconnections, it is possible to derive a description of the behavior of

the whole system" (1:445). The code provided in this section is one possible implementation

of VERIFY's method for deriving behavior.

Since some devices have an associated state and some devices are simply combina-

tional logic, different types of behavior must be derived. However, all devices are described

by at most two types of equations: output equations and next state equations. Barrow's

notation is used in the following representations for a specified behavior:

output-eqn(Module, Out : Function)
stateeqn(Module, Next-State := Function).

The stateeqn notation became very confusing, since the stateeqn really referred to the

equation for the next state in a sequential machine. To somewhat remove this ambiguity,

when a behavior is derived, the following clauses are asserted into the database:

derived-behavior (Module, Output ,Behavior)
next-state (Module, State, Function).

This helps the programmer to remember that the prototype is really deriving the

expected output and next state. Asserting these clauses in the database also frees the
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programmer from passing parameters in the heads of clauses. Asserting these clauses is a

variation of the technique used by Grabowiecki et al. (10:40).

Now, all that would be required to derive the behavior of a module would be to type:

derive.and.equate-behaviors (Module) and/or
derive-and-equate-states (Module).

These clauses, when invoked by a verify clause for the appropriate module types, extract

the Outputs and Next.States from the module specifications and derive the appropriate

behavior. The clause, derive-behaviors is used to extract the information for outputs and

then invoke the derive-behavior clause to actually derive the behavior for the specified

output. If a Module has state, some internal variables may need to be removed from the

derived behavior. This is the reason for two derive-behavior clauses and the need for

the substitute-state clause. The code is as follows:

derive-behaviors(Module,Form,Behavior) :- /* no state */
not state.eqn(Module,-),

output.eqn(Module,Form :=Spec.Behavior),
derive-.behavior(Module,Form, Behavior).

derivebeaviors(Module,Form,Behavior) :- /* has state 0!), */
output-eqn(Module,Fom := Spec.Behavior),
derive.behavior (Module, Form, TBehavior),
substitute.state(Module,TBehavior,Behavior). /* might require */

/* the removal of some internal variables. */

The majority of work is performed by the derive-behavior clauses. These clauses

work their way through the connected clauses for each output until a module terminal is

reached. The process is a simple substitutional one which would be used by humans. For

example, given the following NAND and XOR module specifications,
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/* ----- Structural Specification for 2-input nand ---- *

module-.name Cnand2).

port (nand2,inO (ANand2) ,intboole).
port (nand2 , ml ANand2),inu,boole).
port Cnand2, out CANand2) ,oup,boole).

/* Behavioral Specification *

output..eqn(nand2,
out(ANand2) := or( neg(inO(ANand2)),~ neg~inl(AMand2))) )

/* Structural specification for a two-input Exclusive-OR *

module..name(xor).

port (xor,inO(AnXor) ,inputboole).
port Cxor, ml (AnXor) ,inu,boole).
port (xor,out(Anor) ,output ,boole).

part Cxor,gl (AnXor) .nand2).
part(xorg2CAnXor) ,nand2).
part (xor,g3 CAnXor) ,nand2).
part(xorg4CAnXor) ,nand2).

connected(xor,inOCAnXor) .inO(gl(AnXor))).
connected(xor, ml (AnXor) .ini (gi (Anlor))).
connected(xor, inOCAnlor) ,inO(g2(AnXor))).
connected~xor,out(gi(AnXor)) ,ini(g2(AnXor))).
connected(xor,out(gl(AnXor)) ,inO(g3(Anlor))).
connected (xor, ml (Anlor) ,ini (g3(AnXor))).
connected(xor,out(g2(AnXor)) ,ino(g4(AnXor))).
connected(xor,out(g3(AnXor)) ,inl(g4(Anxor))).
connected (xor,ou(g4 (AnXor)),out(AnXor)).

/* Behavioral Specification for a two-input XOR *

output..eqn Cxor,
out(AnXor) :=ar( and( neg(inO(AnXor)),

inl(AnXor) )
and( inO(AnXor),

neg(inl(AnXor)))),
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the following output behavior is derived:

or(and(inO(_755),
or(neg(in(.-755)),neg(inl(.755)))),

and(or(neg(ino(.S5)) ,neg(inl(.755))),
iniC_755)))

The form is canonicalized, but one can see that the outer OR is g4, the ANDs

inside the OR are g2 and g3 and the or(neg(in0(755)) ,neg inl (755))) is the output

of gl. All gate outputs have simply been replaced with their derived behavior (Since a

NAND gate is considered primitive, the derived behavior of a NAND gate is the specified

behavior). A human would obtain this by working his way back through the NAND gates,

substituting the appropriate output equation for the NAND gates until the terminal inputs

are reached. This is a simple recursive process which is duplicated by the derive-behavior

clauses. Along the way, a simple substitution of a submodule's derived behavior is made

when a submodule's output is encountered. Boolean or mathematical equations are further

expanded and canonicalized. Any type of behavior not captured by some Boolean or

mathematical rule is simply returned unchanged.

The derive-behavior clauses are arranged in three groups. The first group traverses

through the connected statements (Rules 1A and 1B). The next group replaces outputs with

their appropriate behaviors (Rules 2A and 2B). The rules in the remaining groups simplify

and canonicalize the behavior obtained from the first two groups. All derive-behavior

clauses have the following form:

derive-behavior(Device, Formula,Behavior)

Device is the gate or component whose behavior is being derived, such as NAND, XOR,

or counter. Formula is the type of behavior to be derived such as out (X) or some state

variable equivalent such as in(regA(X)). Behavior is, of .course, the resulting derived

behavior. The types of clauses developed are the following:
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derive-.behavior(Module, Form, Source) :
connected(Module, Source, Form),
primary.source (Source),
!,vriteln(['Applying Rule IA to ',Form]).

derive..behavior(Modula, Form, Behavior)
connected(Module, Source, Form),
derived-source (Source),
!,writelnC['Applying Rule lB to ', Form]),
derive..behavior(Kodule, Source, Behavior).

derive..behavior(Module, Form, Behavior)
Form 1 ,
Form .FG),
part(Module, G, Component),
not partCComponent,-.,-J, 1* Component is a primitive module *
output..eqn(Component, Form :- OutForm),
!,writeln(E'Applying Rule 2A to ', Form)),
vriteln( [Component,' 'a output equation:')),
writeln([' 1, Form, I:= 1, OutForm]),
derive-.behavior(Module, OutForm, Behavior). /* replace gate *

1* inputs with module variables *
derive-.behaviorCModule, Form, Behavior)
Form \1,
Form in. F,G),
part(Module, G, Component), /* from cut, no+ primitive component *
/* previously verified due to verify-.components in verify clause *
derived-.behavior (Component ,Form, OutForm),
!,vriteln(C'Applying Rule 2B to ', Form]),
writeln( [Component,' 'a derived behavior:']),

derive-.behavior(Module,OutForm,Behavior). 1* replace gate *
A* inputs with module variables *

derive..behavior(Module, neg(Form), Behavior) :
!,writeln(['Applying Rule 3 to ',neg(FornO]),
derive..behavior(Hodule, Form, Behi),
evaluatel(neg(Behl), Behavior).

derive..behavior(Module, and(Forml,Form2), Beh)
!,writeln(C'Applying Rule 4 to I,and(FormI,Form2)]),
derive..behavior(Module, Formi, Behi),
derive..behavior(Hodule, Form2, Beh2),
evaluatel(and(BehiBeh2), Beh).
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derive.behavior(Module, or(Formi,Form2), Beh)

!,writeln(['Applying Rule 5 to ',or(Forml,Form2)]),
derive.behavior(Module, Forml, Behl),
derive.behavior(Module, Form2, Beh2),
evaluatel(or(Behl,Beh2), Beh).

derive-behavior(Module, if(CondTexpFexp), Beh) -

!,vriteln(['Applying Rule 6 to ',if(Cond,Texp,Fe7-p)]),
derive.behavior(Module, Cond, NCond),
derive.behavior(Module, Texp, NTexp),
derivebehavior(Module, Fexp, NFexp),
evaluatel (if (NCond,NTexp,NFexp), Beh).

derive.behavior(Module, First + Second, Beh)
!,vriteln(['Applying Rule 7 to ',First + Second]),
derive.behavior(Module, First, Behi),
derive.behavior(Module, Second, Beh2),
evaluatel(Behl + Beh2, Beh).

derivebehavior(Module, Form, Form) /* default Rule */
writeln(['Applying default Rule to ',Form]).

The clauses primary-source and derived.source are introduced in the first two

derive-behavior clauses. The primary-source and derived-source clauses distinguish

between a Module input (primary.source) and a Component input/output (derived-source).

primary-source(Source) -

Source =.. [.,Arg],
var(Arg).

derived-source(Source) -

Source =.. [.,Arg],
Arg a.. [_,Arg2],
var(Arg2).

Any new type of behavior needed to expand AFITERIFY would require new

derive-behavior clauses. Again, if the decision is made to assert a derived-behavior

fact for primitive modules, then Rule 2A could be removed. The evaluatel procedure is

introduced in this code. It is merely a preliminary simplification of the derived behavior.

The clause evaluatel is simply a test clause which invokes evaluate-brown and prints

the behavior before and after simplification. The evaluate-brown clauses actually per-

form the simplification and rudimentary canonicalization. As with the derived-behavior
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clauses, evaluate-brown clauses will need to be added when new behaviors are added. The

first three evaluate-brown clauses provide basis cases for a behavioral structure, namely

a. variable, atom, or an elementary structure. The next three clauses provide a method of

simplification and canonicalization of the Boolean functions AND, OR, and NOT. Another

canonical form may prove quicker; in that case, these clauses would need to be modified

accordingly. The identifier neg has been chosen as the negation functor, as opposed to the

more widely used not, since Prolog defines the goal not P to succeed in case the goal P

fails (i.e., cannot be proved) in the existing database. The clause not is not provided in

Quintus Prolog. This is why not is defined in the qops.pro file. The remaining clauses

provide a method of simplification and canonicalization of the operators required to verify

the fulladder and counter, namely, if and +.

evaluatel(X,EX) :-
writeln(['Value of ',X,':']),
evaluate.brown(XEX),
writeln(C' ',EXJ).

evaluate.brown(X,X) :-
var(X),'.

evaluate-brown(XX) :-
atomic(X),!.

evaluate.brown(Struct,Struct) :-
Struct -.. [F,Arg),
( var(Arg) ; atom(Arg) ),!.

evaluate.brown(and(X,Y) ,Value) :-
evaluate.brovn(XEX),
evaluate.brown(Y,EY),
( (EX- 0 ; EY 0), ,

Value = 0

EX = 1, ,
Value a EY

EY = 1, !,
Value = EX

!,Value = and(EX,EY)
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evaluate..brovn(or(X,Y) ,Value) :

evaluate.brovn(X ,EX),
evaluate-.brom(Y ,EY),

Value a I

EX = 0, !
Value a EY

EYuO, 0,
Value a EX

[,Value - or(EX,EY)

evaluate-.brovn(neg(X) ,Value)
evaluate-.brovn(X ,EX),

Cvar(EX), !,
Value aneg(X)

EX -0, !
Value - I

EX - 1~ ,
Value = 0

atom(EX), !
Value a neg(EX)

EX - eg(N), !
Value - N

EX = and(A1,A2), f

evaluate-.brovn(neg(A1) ,NAI),
evaluate-.brown(neg(A2) ,NA2),
Value - or(NAI,NA2)

EX a or(01,02). ,
evaluate-.brown(neg(Oi) ,NOI),
evaluate-.brown(neg(02) ,N02),
Value a and(NOIN02)

,Value = negCEX)
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evaluatebrown(if(Cond,Texp,Fexp) ,Value) -

evaluate-brovn (CondNCond),
evaluate.brown(Texp,NTexp),
evaluate.brown(Fexp, NFexp),
C (NCond a 1, !, /* Condition is true */

Value a NTexp ) ; /* return True exp */
(NCond a O, !, /* If False then */
Value a NFexp ) ; /* return False exp *1

C NTexp a NFexp, !, /* Condition irrelevant */
Value a NTexp ) ; /* if choices equal */

Value a if(NCond,NTexpNFexp), /* otherwise return */
/* simplified expression. */

evaluate.brown(X+Y,Z) -

integer(X),
integer(Y), !,
Z is X + Y. /* force simplification of 1 + 2 = 3 */

evaluate.brown(X+Y,Z) -

integer(Y),!, /* X not integer due to cut */
evaluate-brown(X,NewX),

Z a Y + NewX. /* canonicalize with integer first */

evaluate.brown(X+YZ) "-
!,evaluate.brown(X,NewX),

evaluate.brown(Y, NewY),
Z = NewX + NewY.

evaluate.brown(X,X). /* default simplification for complex */
/* structures like in(incA(X)). */

Deriving the next state is only a variant of deriving the behavior of an output.

The state variable and its internal variable equivalents are extracted. A behavior is then

derived for the internal variable, which is, in fact, the next-state behavior for the state

variable. Occurrences of internal variables in the derived behaviors are replaced with

the state variables when such simplifications will make the process of equating behaviors

simpler (3:103). The replace-all clauses find all signals in a derived behavior which are

connected to a state variable in a module and replace them with the state variable. First,

the New signal is substituted for the Old signal in the Old Behavior (OldBeh) to create an

intermediate Substituted Behavior (SB). Next, any signal (Other) connected to th6 Old
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signal is found and the substitution process is repeated (recursive call of replace-all).

Trhe code required to derive the next state is the following:

derive-s.tates(IModule ,State,Next-.State) : -
state-.of(odule,State,Type), /* It has state *
state..map(Module,State,Internal),/* It's mapped to an internal part*/
state-.eqn(Part,Internal :- NextState), /* Internal state is a *
derive-.behaviorModule,NextState,Beh), /* function of inputs and *
substitute-.state(Nodule,Beh,Next..State). /* previous state *

substitute...tateCModule,DerBeh,SubBeh)-
state-.map (Nodule ,External ,Internal),

writeln(['Derived Behavior: ',DerBeh]),
replaceall (Module,Inera,External, DerBeh,SubBeh),
writeln(E'Substituted Behavior: ',SubBeh)).

replaceallCModule,Old,Nev.OldBeh,SubBeh)-
replace(Old,New,OldBeh,SB),

Cconnected(Nodule,Old,Other)
output..eqnCPart,Other := Old) )

replaceall(Module,Other,Neu,SB,NevSB),
evaluatei(NewSB,SubBeh). /* Simplify further if possible *

replaceallCModule,Old,Nev,Beh,Beh) :- * no mote connections *

replace (Old, Nev,Other, Other):-
atomic (Other),
write('Rule2') ,nl,!.

replace(Old,Nev,Other,Other) :

var(Other),
writeC'Rule3') ,nl,!.

replace(Old,Nev,Other,Other)-
Old z.. [F,Argl, /* keeps inCX = in(incA(X)) *
Other =.. EG,Arg2J. /* from occuring, occurs test *
F \== G,
( var(Arg2) ; atomicCArg2) ), * already simplified *
vrite('Rule4'),nl,!.
replace(Old,Nev,and(X,Y) ,and(NevBI,NewB2))
!,writeC'Rule and') ,nl,
replace(Old,New,X,NewBi),
replace (Old ,New, Y ,NewB2).
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replace(Old,New,or(X,Y),or(NewBI,NewB2)) :-
!,vrite('Rule or'),nl,

replace(OldNew,X,NewB),

replace (Old, New, Y,NewB2).
replace(Old,Nev,neg(X) ,neg(NewB))
!,write('Rule neg'),nl,
replace (Old,New,XNewB).

replace(OldNevX + Y,NewB1 + NewB2) :-

!,write('Rule + '),nl,
replace (Old, New,X, NewB1),
replace(Old,New,Y,NewB2).

replace(Old,Ne,if(Cond,Texp,Fexp),if (NewB 1,NewB2,NewB3))
!,write('Rule if'),nl,

replace(Old,New,Cond,NewBI),
replace(Old,Nev,TexpNewB2),
replace(OldNew,Fexp,NewB3).

replace(OldNew,OtherNewB) /* in(X) /== in(incA(X)) */
Old -.. [FArgl],

Other -.. [F,Arg2],

( (var(Argl), not var(Arg2) );
( not var(Argi), var(Arg2) ) ),

replace (Old,New,Arg2,NewArgs),
NewB a.. EF,NewArgs), /* Old behavior or Old Behavior is */
write('Rule struct'),nl,!. /* some other nested structure */

replace(Old,New,Old,New) :-
write('Rule 1'), nl,!. /* If you find X replace with Y */

replace(Old,New, OtherOther) :-
write('Default Rule'),nl. /* default rule. */

As with derive-behavior and evaluate-brown, new replace clauses will need to

be added when new behavioral structures are created. It should now be readily apparent

that Prolog can be thought of as a guided search. A programmer merely provides the

type of patterns which he wants to encounter. This is why new behavioral descriptions are

accomodated by adding new clauses to "handle" the new structure.

4.5 Determining Equivalence

The majority of work on AFITNERIFY went into developing the ability to derive

behavior. Determining equivalence of the two behaviors is a well-understood, but non-

trivial task. The examples verified have been limited, and the need for extensive work

on equivalence will arise with newer and larger examples. Most of the work of determin-
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ing equivalence is accomplished by the Boolean expansion code created by CPT Dukes

(6:39-43). It is noted that the Type attribute in a port clause can be used to guide the

methods of determining equivalence. The work to this point concentrated on verifying and

deriving the behavior of Boolean circuits with the exception of the counter-circuit exam-

ple. In the counter-circuit example, determining equivalence was simplified by making a

simple canonicalization. Any occurrence of (term + integer) was replaced by (integer +

term). This allowed the derived behavior and specified behavior of count (counter) to be

trivially equivalent. The following description and code provides the current methods for

determining equivalence.

The derive-and-equate-behaviors and derive-and-equate-states clauses use the

equal-behaviors and equal-states clauses to provide every output/state equivalence.

The primary methods used to determine equivalence are simplification and Boolean expan-

sion. The following code implements the equivalence portion of AFITVERIFY.

equal-behaviors (Module,Output, Derived.Beh) : -
output.eqn(Module,Output :- Specified-Beh),/* get specified behavior */
eqb(Module,DerivedBeh,SpecifiedBeh).

equal-states (Module,Nextstate,Derived.State): -
state-eqn(Module,Nextstate :- Function), /* get specified state */
eqb (Module,DerivedState,Function).

eqb(M,X,X) /* trivial identity */

eqb(M,DB,SB) :- /* Boolean expansion */
/* expandable(M), fewer than too be determined combinations */

/* and Boolean variables */
evaluate.dukes (DB,NewDB),
evaluate.dukes (SB,NewSB),
writeln(['Does ',NevDB,' al']),writeln(E' ',NewSB]),
eq(NewDB,NewSB),
writeln([DB,' a']),vriteln([ ' ,SB]),
writeln(['By Boolean Expansion']),!.

expandable(M) :- /* some how-many function will */
port(M,.,.,boole),!. /* be required */
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eqb(M,DB,SB) :- /* simplification */
evaluatel(DBNDB),
evaluatel(SBNSB).
( DB \an NDB
SB \-- NSB ),

writeln( 'Derived behavior is: ',D),
eqb(MNDBNSB), !.

The clause eq(NevDB,NevSB) is the driver for the code which performs CPT Dukes's

Boolean expansion code. An introduction to the concept of Boolean expansion seems

appropriate at this point.

Boole's Expansion. There are two basic methods of determining the equivalence

of two functions f and g. Consider a design composed of the following:

i = 1...n inputs and

j = 1...m outputs.

Equations f and g are Boolean functions of n input variables with m possible output

values. The first method of determining equivalence is to enumerate all possible 2n input

values and compare all m possible output values. This approach will always require m2 n

operations and gets out of hand very quickly as m and n grow.

The second approach, which can have many variants, is to perform Boole's Expansion

on functions, and show that each expanded sub-function is equivalent. This can cause

success much sooner and will probably require much less than 2n expansions if combined

with an effective pattern matching algorithm which checks for equivalence at each node

expansion. (This is why Prolog is so beneficial; its entire operation is based on pattern

matching.)

Boole's expansion can be stated for n variables as follows (6:36):

Theorem 1: f(Xl,X 2 ,...,Xn) * X'lf(O,X 2,...,xn) +xf(1,x 2 ,...,xn)

A complete expansion of two variables is the following:

f(x, y) * x'f(O, y) + X(1, y)

* x'(y'f(O, 0) + yf(O, 1)) + x(y'f(1, 0) + yf(1, 1))
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This final form is what is known as the Minterm Canonical Form. The equivalence

of f and g can be shown (6:36-37) by the following:

Equation 1: f(Ob X2,. .. )2n~) * g(21,X 2) ...in

iff

Equation 2: (xTIf (0, X 2 ..... TO,~ * (X'1g(0, X2,.. - X,)

AND

Equation 3: (Xlf(1,a2X21 .,iXn) * (XIg(1, X2,. X,

Boole's Expansion can then be recursively applied to Equation 2 and Equation 3 to

produce the tree in Fig 4.1.

fl gl f2 g2

f3 *g3 f4 *g4 f5 *g5 f6*t g6

zI

f 7 *>97 f8 * g8

Figure 4.1. Boole's Expansion AND-tree.
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Since the search space is an AND-tree, once a branch is found to be false, the search

can terminate with failure. A blind, depth-first search can be performed by simply selecting

the first variable and substituting logical Os and ls for it. A general best-first search

technique can be used by creating some criterion for the best variable to choose, such as

most occurrences in function f or g or both. Still, in the worst case, the tree will have

to expand 2 AND-nodes at each level to a depth of n variables. This results in 2' - 1

expansions, but in most cases, due to pattern matching and equivalence checking at each

expansion, falls or succeeds much faster.

CPT Dukes's code has been modified to work for the type of structures used in

AFITVERIFY. The code used by AFITVERIFY will now be summarized. A more

detailed discussion is provided in the reference (6:39-43).

CPT Dukes defined xor, or, and, and not as operators represented by the respective

one-character symbols $,@,-, and -. In AFIT-VERIFX, xor, or, and, and neg are used as

principal functors. The eval clauses are Boolean simplifications of the functors xor, or,

and, and neg.

eva1(or (1 ,_),i) : -!.

eval(and(l,X) ,X) :-!.
eval (ior(l,X),nog(X)) :-!.
eval(or(O,X) ,X) :-!.
eval(and(O,.),O):-!.
oval(xor(0,X),X) :-!.
oval(or(.,I) ,1):-!.
eval(and(X,i) ,X) :-!.
eval(xor(X,i),neg(X)) :-!.
eval(or(X,O) ,X) :-!.
eval(and(_,O) ,O) :-!.
eval(xor(X,O) ,X) :-!.

eval(neg(O),i) :-!.
eval(neg(1) ,0) :-!.
eval(or(neg(X),X),1):-!.
eval(or(X,neg(X)),I):-!.
eval(and(neg(X) ,X) ,0) :-!.
oval(and(X,neg(X)), O):-!.
eval (xor(XX) ,0) :-!.
oval(xor(neg(X),X),I):-4!.
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eval(xor(X,neg(X)), I):-!.
eval(or(X,X) ,X) :-!.
eval(and(X,X) ,X) :-!.

eval(XX) :-!.

The extract clauses are used to extract a variable from a structure to use in the

Boolean expansion. (These currently perform a blind, depth-first search.)

extract(X,X) :- /* X is of the fo:= inX(Avariable) */

X ... [_,Arg],
var(Arg),!.

extract (X,neg(Y)) -

extract (X,Y).

extract(X,or(L,_) :-

extract(XL).

extract(Xor(_,R))
extract(X,R).

extract(Xand(L,_) :-

extract (X,L).
extract(X,and(_,R))
extract(XR).

extract(X,xor(L,_))
extract (X,L).

extract(X,xor(_,R))
extract(X,R).

The clauses remove.x_1 and removexO replace every occurrence of the variable x

with the Boolean value 1 and 0, respectively. The two clauses are identical, except for

the Boolean value replaced; therefore, it is only necessary to include one of the clauses for

explanatory purposes.

remove.x_(Y,XY) :-

atomic(Y), !.
remove.x,1(neg(Y),X,neg(Y))

atomic(Y),!.
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remove-.x-..(Y,X,Y)
Y a.. EI1,Argl),
var(Argi),
X .. E12,Arg2j, /* we already know X is a Variable *
11 ui 12,!.

remove..z.I(neg(Y) ,Xneg(Y))
Y -.. [II.Arg),
varCArgi),
X E. 12,Arg2), /* we already know X is a Variable *
11\= 12,!.

remove-.x..iCY,X,I):
Y =. I1,Argi), /* inoC-i) \== inO..2) in Prolog *
var(Argi), 1* but we know it is the same input *
X =.. [II,Arg2.,!. /* we already know X is a Variable *

remove-.x..1(neg(Y) ,X,O):
Y a.. [Ii,Argi),
varCArgi),
X =.. [II,Arg2l,!. 1* we already know X is a Variable *

remove-.x..i(neg(Y) ,X,neg(NewY))
,remove-.x-..(Y,X,NewY).

remove.x..i~or(L,R) ,X,or(LNew,RNew))
I ,remove-.x..i(L,X,LNew),
remove..x-jCRX,RNew).

remove-.x..(andCL,R) ,X,and(LNew,RNew))
!.remove-.x..i(L,X,LNew),
remove-.x..(RX,RNew).

remove-.x..i~xor(L,R) ,X,xor(LNew,Rl~ew)) :
I ,remove-.x..i(L,XLNew),
remove-.x_,i (RX,RNew).

The divide clause is used to expand the clause, F, into two clauses, one where every

X is replaced by logical 0 and the other where every X is replaced by logical 1. The

resulting functions are then simplified by the evaluate-.dukes clauses.

divide(F,X,FO,Fl) :
remove.x_OCF ,X ,FOTemp),
remove-.x CF ,X,FlTemp),
evaluate-dukes(FOTemp,FO),
evaluate-.dukes(FITemp ,Fi).
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evaluate-dukes (X,X) -

atomic(X),!.
evaluate-dukes (X,X):-

X -.. [I,Arg),
var(Arg),
I \a- neg.!.

evaluatoedukes(nog(F),FRoduced)
evaluatoe-dukes (F,FTemp),
oval (neg(FTemp), FReduced),!.

evaluate.dukes(or(L,R),Resolved)
evaluate..dukes (L ,LNew),
evaluate-dukes (RRNew),
oval (or (LNev,RNev),Resolved).

evaluate-dukes(and(L,R) ,Resolved)
evaluate-dukes (L, LNew),
evaluate-dukes (R,RNew),
eval(and(LNew,RNev),Resolved).

evaluate.dukes(xor(L,R) ,Resolved)
evaluate-dukes (L ,LNew),
evaluate.dukes (R, RNew),
oval (xor(LNew,RNew),Resolved).

The eq clauses are the drivers for the Boolean expansion. First, the eq clauses check

for trivial equivalence of functions F and G. If functions F and G are not equivalent eq

extracts a variable X, replaces it with is and Os in both functions F and G to produce the

new functions, FO, F1, GO, and G1. The process is then repeated on the new functions.

Checking for equivalence at each stage greatly enhances the chance of producing trivial

equivalence or failure, and results in a faster search than performing a complete Boolean

expansion and then checking for equivalence only once.

eq(X,X):-!.
eq(F,G) :-
extract(X ,F),
divide(F,X,FO,F),
divide(G,X,G0,G),!,
eq(FO,GO),!,
eq(FI,G1),!.
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4.6 Summary

AFITVERIFY provides a framework to verify any type of hardware module (i.e.,

modules with multiple outputs and/or multiple states) where feedback is broken by a reg-

ister. AFITVERIFY was developed in a modular fashion to allow the addition of new

behaviors. When a new behavior is required, only derive-behavior, evaluate-brown,

and replace-all clauses need to be added. No modification of existing code should be re-

quired. The portion of code which determines the equivalence of the derived outputs/states

and specified outputs/states will need to be expanded. AFITVERIFY currently only per-

forms simple canonicalizations, trivial equivalence, and Boolean expansion; therefore, only

Boolean or simply canonicalized modules can be verified. All code was developed on a

PC using PROLOG-1, since this provided the best prototype development available at the

time. PROLOG-1 was not powerful enough to verify a full-adder module, due to stack

overflow. Work continued on mainframe Quintus Prolog, which had no problem with the

full-adder verification. Future work at AFIT is expected to be performed on a PC version

of Quintus Prolog.
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V. Results and Recommendations

5.1 Results

The goal of this thesis was to provide a Prolog implementation of the concepts dis-

cussed by Barrow (1). AFITVERIFY would enable an AFIT engineering student to

describe the behavior and structure of a logic circuit. AFITVERIFY would then derive a

behavioral description from the str .ctu-2z description and determine if the two behavioral

descriptions are equivalent. This goal has been met. An AFIT engineering student can

describe, in Prolog, combinational and sequential logic circuits composed of nand2, xor,

full-adder, mux, inc, reg, and counter modules. Behavior must be specified by using

NAND, XOR, full-adder, AND, OR, neg, inc, MUX, reg, and counter structures in Prolog

functor notation as shown in in the examples in Appendix A. The circuit descriptions

currently created are the following;

1. nand2 - A two input NAND gate (Primitive component).

2. xor - A two input XOR gate composed of nand2 submodules.

3. faddxor - A full-adder composed of xor and nand2 submodules.

4. mux - A 2X1 multiplexer (Primitive Component).

5. reg - A register which stores an integer (Primitive Component).

6. inc - An integer incrementer (Primitive Component).

7. counter - An integer counter composed of mux, reg, and inc submodules.

Two non-primitive modules, the counter and faddxor modules have been verified using

AFITVERIFY. Sample runs are included as Appendix B. The counter module provides

an example of a simple sequential circuit. The counter module is composed entirely of

primitive components, but demonstrates AFITVERIFY's ability to treat a circuit as a

black-box. The behavior of the external state count is derived by deriving the state of

its internal representation, the contents of the register. Then, count is substituted for

contents wherever it may appear in the derived behavior. The counter module was

5-1



verified on PROLOG-1 and Quintus Prolog. Two versions of AFITVERIFY were used.

One version contains outputs which helped in debugging the development code. The second

version removed all ouputs to show how much time is devoted to I/O. The results for the

counter and faddxor modules are summarized in Table 5.1.

Table 5.1. PROLOG-1 vs. Quintus Prolog Run Times

Module PROLOG-1 Quintus Prolog
counter(outputs) 11.0sec 2.Osec

counter(no outputs) 5.Osec 1.0sec
faddxor(outpus) 175.0sec 13.0sec

faddxor(no outputs) 83.Osec 7.Osec

Quintus Prolog was much faster, as expected. The times are encouraging for further

work. The faddxor module, as specified, contains 11 primitive gates (nand2). This is

not a significant number of gates, but it requires the hierarchical verification of the xor

module in the process of verifying the faddxor module. The derivation ultimately contains

30 connections; 12 from the faddxor specification and 9 each from the 2 xor specifica-

tions. Though not overwhelming evidence, it suggests that circuits with 1000 structural

connections could be verified in a few minutes. The AFITNERIFY methodology is defi-

nitely deserving of more research. It should be noted that the faddxor module could not

be verified by PROLOG-1 with the "output" version of AFITVERIFY. This was due to

insufficient stack space.

Currently, all modules, submodules, and the verification code need to be loaded

in the order specified in Appendix A prior to verification of a module. The types of

modules which should exist as primitives and be loaded with the verification code will

need to be determined in follow-on work. Since the examples were sufficiently small for

mainframe Quintus Prolog, no system state (verified, derived-behavior, next-state

clauses) had to be written to disk for possible system restart (1:487). When larger circuits

(1000 internal connections) are verified, a method for saving system state and restarting

verification from that point will be required. Prolog does provide built-in mechanisms to

perform state savings during the course of a program.
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Each Prolog clause was developed and tested modularly by first ensuring the proper

operation of each subclause and then testing each clause. The majority of the code was

developed in a three month period. The code is not verified, but each clause does provide

the expected behavior. When AFITNERIFY claims that a module is verified, it can be

trusted. AFITVERIFY provides AFIT with a method to provide true module verification.

AFITVERIFY is only a start towards a complete design/verification system, but work

towards such a system will continue at AFIT. This research should result in great time

and cost savings to AFIT and possibly to the rest of the engineering community.

5.2 Recommendations

Many different areas can be researched in follow-on efforts. The following is only a

suggested list.

1. Verification of Gordon's D74 (1:456) or other larger circuit.

2. In conjunction with the AFIT VLSI group, integration of AFITNERIFY into a

larger design system similar to Grabowiecki et al. (10) .

3. Integration into AFITERIFY of a Very High Speed Integrated Circuit (VHSIC)

Hardware Description Language (VHDL) to Prolog parser for the construction of

Prolog behavioral and structural specifications. (A VHDL to Prolog parser exists

on the AFIT Microvax Cub under the directory, -ges/MCNC/vhdl2.)

4. Analysis of Prolog vs HOL or Prolog/HOL hybrid approach.

The first thing to consider before any of these areas can be researched is the viability

of a Prolog approach. The specifications, structural and behavioral, required for small

circuits are small, but the size of a structural specification is a function of the number

of connections, or connected facts. If behavior and structural equivalence (i.e. low-level

behavioral specification) can be modelled at the gate level, and it should be, a Prolog ap-

proach appears feasible. This feasibility is based on the Quintus Prolog run times discussed

above. If all connections are required at the transistor level, then it could take years to

verify a large circuit using Prolog.
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Another problem is, "What is behavior, and how can it be specified?" It is straight-

forward for a combinational logic circuit composed of standard gates. But how does one

represent a sequential circuit with feedback not broken by a state variable. This problem

is expected to be studied in the next thesis cycle.

After consultation with the AFIT VLSI group, it appears that future research should

proceed as follows: Obtain a circuit from the AFIT VLSI group containing 100 to 200

connections. Verify this circuit using AFIT-VERIFY, adding the appropriate behavioral

constructs common to the AFIT VLSI group. (This will be performed in the next thesis

cycle.) If this proves successful (i.e., verification requires minutes as opposed to hours), a

larger (more than 1000 connections) circuit should be identified for verification. Integral to

this phase should be the incorporation of the previously mentioned VHDL to Prolog parser.

This would provide the AFIT VLSI group with the capability to use the DoD-mandated

HDL. Integration of the Prolog verifier into a larger VLSI design system should be the

ultimate goal, but some verification capability is preferred to no verification capability.

The ability to verify portions of a large circuit can provide an increased capability to the

VLSI group. One must also remember that AFIT.VERIFY is a hierarchichal verification

system. Verification of one module of the circuit at a time is the method used to speed up

the verification process. It is also the method which should be used in further developing

the system.
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Appendix A. AFIT.VERIFY Code

The following files constitute the development code for AFITNERIFY. The major-

ity of code was developed using PROLOG-1. The only differences in PROLOG-1 and

Quintus Prolog code are handled in the two separate files qops.pro (Quintus) and ops.pro

(PROLOG-1). All other files remain the same on both systems. The files developed for

AFITVERIFY axe the .ollowing:

1. qops.pro - Quintus Prolog operator definitions and system-dependent procedures.

2. ops.pro - PROLOG-1 operator definitions and system-dependent procedures.

3. boole2.pro - CPT Duke's Modified Boolean Expansion code.

4. eval.pro - Rudimentary canonicalization clauses.

5. derbeh.pro - Derive Module behavior.

6. derstate.pro - Derive Module next state.

7. eqbeh.pro - Determine Behavior Equivalence.

8. verify.pro - Driver clause.

9. counter.pro - Counter, Incrementer, Register, and Multiplexer Module specifications.

10. xor.pro - Exclusive-OR and NAND Module specifications.

11. faddxor.pro - Full Adder Module specification.

For use in ITEX, the .pro files were slightly modified and changed to .tex files. The .pro

files were given to Dr. Brown on a 5It, 360K floppy disk and also appear on the AFIT

Microvax System Cub under -ksparks\thesis.
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********************************************************** */

/* QOPS.PRO */
/* This file provides the utility and operator definitions .1
/* to run verify.pro on Quintus Prolog. The :- multifile */
/* definition was required to allow Modules to be declared */
/* in separate .pro files. Without this definition, any */
/* new module loaded would wipe out the previously loaded */
/* modules, and in the case of a fuiLadder (multiple file) */
/* this was a problem (the defn of nand2 and xor was gone) */
/* Operator precedence in Quintus goes from 0-1200, but */
/* PROLOG-i runs 0-255 , PROLOG-1 refman 5.5, Bratko p.182 */
/* .1

- multifile module-name/1, port/4, part/3, output.eqn/2, state-eqn/2,
state-map/3, state-of/3, connected/3.

1* ---------------- UTILITIES ------------------------ *

writeln()
nl.

writeln(EXI Rest]) :-
write(X),
writeln(Rest).

I* *1

1* The goal 'find.all(T,G,L)' constructs a list L consisting .1
1* of all instantiations of the term T for which the goal G .1
/* is satisfied. The goal */
1. find-al(EX,wife.of,Y], husband(Y,X), Couples) , ./
/* for example, might instantiate Couples to */
/. [[amy,wife.of,tony],[sue,wife.of,john],[dotwife-of,tom]] */
/* for a given family-database. See the Bratko text, p. 177, */
/* for another implementation of 'find.all'. *1
l* */

1* FIND-ALL is needed to check for proper operation of the .1
/* clauses verify-components, derive-and.equate.behaviors, and */
/* deriveand-equatestates. */
l* "-----------------------------------------------

find-all(T,G,L) :- 1* To make a list L of terms T .1
store-elts(TG), /* satisfying the goal G, store */
build-list([],L). /* the terms as facts and then */

/* collect the facts in an */
/* initially-empty list. */
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sto:ce.elts(T,G) :- 1* 'store(T,G)' has the side- */
asserta(element(end)), /* effect of forming a sequence */
call(G), /* of facts having the form
asserta(element(T)), /* 'element(T)', where T is a */
fail. /* term satisfying the goal G. */

store.elts(.,.). /* The second clause enables */
/* the procedure to succeed. */

build.list(Part,Total) :- /* 'build-list(P,Q)' succeeds *1
get-next(T), /* in case Q is the list re- */

/* resulting from attaching the */
build-list([TIPart],Total). /* 'element' facts in the cur- */

build-list(L,L). /* rent database to the list P. *

get.next(T) :-
retract(element(T)),

T \== end.

length-of([],O). /* Bratko, P. 88 */
length.of([.[L,N) :-

lengthof(L,Ni),
N is Ni + 1.

member(X,[XI_]). /* Bratko, p. 68 */
member(XLIL)-

member(X,L).

undup([],[J). /* The null list contains no
undup([XIT],M) :- /* duplication. If X is in the */

member(X,T), /* tail, then remove all dups from */
/* the tail. If X is not in the */

undup(T,M). /* tail, return X with other dups */
undup([XIT),[XIM]) :- /* removed from the tail. */

undup(T,M).
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I* *l

1* SET.OF performs the same function as FIND-ALL, except *1
/* all duplicates are removed from the list L. SET-OF is */
/* not defined in PROLOG-i but SETOF is defined in */
/* However; since SETOF didn't perform as expected, the ,/
/. clause SETOF is also used in QUINTUS PROLOG. */

1. .1

/* The above utilities member(X,L) and undup(L,UL) are .1
/* required to produce set-of(T,G,UL). The member(X,L) */
/* clause determines if X is a member of list L. The */
/* undup(L,UL) clause removes duplicates from list L to *
/* produce list UL. */
l* *I

set-of(T,G,UL) :-
findall(T,G,L),
undup(L,UL).

/* ---- OPERATORS -/ OPERATORS--------------------------

?- unknown(trace,fail).

?- op(lO0, fy, not).

not X :-
call(X),! ,fail;
true.

?- op( 900 , xfx, :=).

?- op( 800 , fx, if).
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OPS.PRO
/ This file provides the utility and operator definitions*/
** to use verify.peo in Prolog-. Remember, in Prolog-1 */
/* operator precedence runs from 0 to 255.

/ --------------------- UTILITIES ----------------------- *

writeln(D) :-

nl.
writeln([XlRest]) :-

write(CX)
writeln(Rest).

1* The goal 'find.all(T,G,L)' constructs a list L consisting .1
** of all instantiations of the term T for which the goal G */
/* is satisfied. The goal **
** find.all([X,wife.of,Y], husband(Y,X), Couples) , **
/* for ex iple, might instantiate Couples to
/,' [[amy,wife.of,tony], [sue,wifeof,john), [dot,wife-of,tom)] */
/* for a given family-database. See the Bratko text, p. 177, */
/* for another implementation of 'find-all'. */

/ FIND-ALL is needed to check for proper operation of the .1
/ clauses verify.components, derive-and-equate.behaviors, and .1
/* derive.and.equate-states.
* --------------------------------------------

find-all(T,G,L) :- / To make a list L of terms T .1
store-elts(T,G), /* satisfying the goal G, store **
build-list([],L). /* the terms as facts and then */

/*.collect the facts in an

/* initially-empty list. **

store-elts(T,G) :- ** 'store(T,G)' has the side- */
asserta(element(end)), ** effect of forming & sequence */
call(G), /* of facts having the form */
asserta(element(T)), /* 'element(T)', where T is a */
fail. /* term satisfying the goal G. */

store-elts(.,_). /* The second clause enables */
/* the procedure to succeed. */
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build.list(Part,Total) :- /* 'build.list(P,Q)' succeeds */
get.next(T). /* in case Q is the list re- */
., /* resulting from attaching the */
build.list([TiPart],Total). /* 'element' facts in the cur- */

build.list(LL). /* rent database to the list P. */

get.next(T) "-
retract(element(T)),

T \== end.

length-of(C,O). /* Bratko, p. 88 */
length.of([.[L],N)

length.of(L,NI),
N is Ni + 1.

member(X,[XI-_). /* Bratko, p. 68 */
member(X,_ ILI) :-

member(X,L).

undup([J,O). /* The null list contains no */
undup([XIT],M) :- /* duplication. If X is in the */

member(X,T), /* tail, then remove all dups from */
/* the tail. If X is not in the */

undup(T,M). /* tail, return X with other dups */
undup([XIT),[XIM]) :- /* removed from the tail. */

undup(T,M).
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I* *I

/* SETOF performs the same function as FIND.ALL, except *I
/* all duplicates are removed from the list L. SET.OF */
/* is not defined in PROLOG-1 but is defined in QUINTUS */
/* PROLOG. *1
I* *

/* The above utilities member(X,L) and undup(L,UL) are *I
1* required to produce set.of(T,G,UL). The member(X,L) *I
/* clause determines if X is a member of list L. The */
1* undup(L,UL) clause removes duplicates from list L to *1
I* Froduce list UL. *1

I* *I

set.of(T,GUL)
find-a11(T,G,L),

undup(L,UL).

/* ------- OPERATORS ----------------------- */

?- op(200, xfx, :=).

?- op(190, fx, if).
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1* BOOLE'S EXPANSION *

/* The following code is a modified version of code *
/* developed by CPT Mike Dukes. *

/* He defined xor, or, and, and not as the respective *
/* operators, $, 0, -, and -. I use xor, or, and, and *
/* neg as principal functors.
/* A detailed explanation of this code can be found in *
1* CPT Dukes's PhD Prospectus, "Formal Verification *
/* Using VHDL''. Additional in-line comments are *
/* provided where modification for this approach is *
1* required.

eval(and(1,X) ,X) :-!.
eval(xor(l,X) ,neg(X)) :-!.
eval~or(0,X),X) :-!.
eval~and(0,-j,0):-!.
eval(xor(O,X) ,X) :-!.
eval(or-,1) .1):-!.
eval(andCX,1) ,X) :-!.
eval(xor(X,i) ,neg(X)) :-!.
eval~or(X,0) ,X) :-!.
eval~and(.,0) ,0):-!.
eval(xor(X,0),X):-!.
eval(neg(0) ,1) :-!.
eval(neg(1) ,0):-!.
eval(or~neg(X) ,X),4):-.
eval(orCX,neg(X)),i):-!.
eval(and~negCX) ,X) .0):-!.
eval(and(X,negCX)) ,0):-!.
eval(xor(X,X) ,0):-!.
eval(xor~neg(X) ,X) ,I):-!.
eval(xor(X,negCX)) ,i):-!.
oval (orCX,X) ,X) :-!.
eval~and(X,X) .1):-!.
eval(X,X) :-!.
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extractCX,X) /* X is of the form inX(Avariable) *
X -.. L-Argi,
var(Arg),!.

extract(X,negCY)):-
extract(X,Y).

QxtractCX,orCL,-) :

extract(X,L).
extractCX,or..,R))

extract(X,R).
extract(X,and(L,.))
extractCXL).

extract(XandC.,R))
extract(X,R).

extract(X,xor(L,-))
extract CX,L).

extractCX,xorC-,R))
extract CX,R).

remove-.x..1(Y,X,Y)
atomic(Y),!.

remove-.x..1(negCY) ,X,negCY)) :

atomicCY),!.
remove-.x..(YXY) :
Y a. [I1,Argi),
varCArgi),
X [. 12,Arg2), /* we already know X is a Variable *
It = 12,!.

remove.x..i~neg(Y) ,X,neg(Y)) :
Y=.. [IiArgi,
varCArgi),
X =.[1L2,Arg2), /* we already know X is a Variable *
Ii t 12,!.

remove-.xl(Y,X,I):
Y x.. [lIArgil, /* inOCA1) \== inoC.2) in Prolog *
varCArgi), /* but we know it is the same input *
X =.. [IlArg2J,!. /* we already know X is a Variable *

remove..x-l~negCY) ,X,O):
Y z. (I1,Argi),
varCArgi),
X =.. [Ii,Arg2),!. /* we already know X is a Variable *

remove-.x1(neg(Y) ,X,negCNewY))
!remove-.x-l.(Y,X,NewY).

remove..x-.l~or(LR) ,X,orCLNev,RNew))
,remove-.x..iL,X,LNew),

removex.. 1R, X ,RNew).
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remove...z..(and(L,R),X,and(LNew,RNew)) :

,remove-.x..1L,X,LNew),
remove.x..i(R,X,RNew).

remove-.x..(xor(L,R) ,X,xor(LNew,RNew)) :
,remove-.x-.iL,X,LNew),

remove-.x-.i(R,X ,RNew).

remove-.x-.O(Y,X ,Y)
atomic(Y) , .

remove.x..o(neg(Y) ,Xneg(Y))
atomic(Y),!.

remove.x-..(Y,X ,Y)-
Y -.. [I1,Argl,
varCArgi),
X [. 12,Arg2], /* we already know X is a Variable *
11\= 12,!.

remove.x..o~neg(Y) ,X,neg(Y))
Y z.. MI,Argll,
var(Argi),
X E. 12,Arg2l, 1* we already know X is a Variable *
11\= 12,!.

remove-.x.O(Y,X,O):
Y -.. EII,Argi),
varCArgi),
X -.. [I1,Arg2),!. /* we already know X is a Variable *

remove-.x..o(neg(Y) ,X,i):
Y =.. [II,ArgI1,
varCArgi),
X =.. [II,Arg2),!. /* we already know X is a Variable *

remove.x.O(neg(Y) ,X,neg(NewY))
,remove..x.O(Y,X,NewY).

remove-.x-.C~or(L,R) ,X,orCLNewRNew)) :
,remove-.x-.O(LX,LNew),

remove..x.O(R,X,RNew).
remove..x.O(and(L,R) ,X,andCLNew,RNew))

,remove-.x.O(L,X,LNew),
remove-x-.O(R,X,RNew).

remove-.x-.o~xor(L,R) ,X,xor(LNew,RNew))
,remove..x-.O(L,X,LNew),

remove-x..O R,X,RNew).
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divideCF,X,FO,Fl)
remove-x.O (FIX, FOTemp),
remove-x. 1 F,X, FITemp),
evaluate.,dukes (FOTemp,FO),
evaluate.dukes(FTemp .F1).

evaluate-dukes (XX):-
atomic(X),!.

evaluate-.dukes CX, X): -
X =.. [I,Arg),
varCArg),
I \== neg,!.

evaluate-.dukee~neg(F) ,FReduced)
evaluate-.dukes (F, FTemp),
eval~negCFTemp) ,FReduced),!.

evaluate-.dukes~or(L,R) ,Resolved)
evaluate-dukes(L,LNew),
evaluate-.dukes(R,RNev),
eval(or(LNew,RNev) ,Resolved).

evaluate-.dukes(and(L,R) ,Resolved)
evaluate-.dukes (L ,LNev),
evaluate-dukes(ft,RNew),
eval(and(LNew,RNev) ,Resolved).

evaluate-.dukes(xor(L,R) ,Resolved)
evaiuate-dukes(L,LNeiO,
evaluate.dukes(R,RNev),
eval(xor(LNev,tNev) ,Resolved).

eq(XX) :-!.

eqCF,G) :-
extract CX,F),
divide(F,X,FO,F1),
divide(G,X,GO,G1),!,
eqCFO,GO),!,
eqCFi,Gl),!.
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/ *** ****** *********** *** *** *** *** ***** **** *** ************

EVAL.PRO
/* This file performs a rudimentary simplification and */
/* and canonicalization on behavioral structures. */
/* Any new behavioral structures added will require */
/* additional evaluate.brown clauses. **
l* *

evaluate1(X,EX) :-
writeln(['Value of ',X,':'J),
evaluate-brown(X,EX),
writeln([' ',EX)).

/* The first three clauses provide basis cases for a ,1
/* behavioral structure, namely a Variable, Atom, or an
/* elementary structure.
I* *l

evaluate-brown(X,X) -

var(X),'.
evaluate.brown(X,X) -

atomic(X),!.
evaluate-brown(Struct, Struct) -

Struct a.. EF,Arg),
(var(Arg) ; atom(Arg) ),!.
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*********************************** ************************

/* The next three clauses provide a method of simplifying */
/* and canonicalizing the boolean functions and, or, *I
/* and negation. Another canonical form may prove quicker */
/* and these clauses would need to be modified accordingly.*/
I* *I

/* NOTE: neg has been chosen as the negation functor, as */
/* opposed to the more widely used not, since Prolog-1
/* defines not as the absence of a fact. The functor not */
/* is not provided in Pure Prolog and therefore, does not */
/* exist in Quintus Prolog. This is why I have defined not*/
/* in the qops.pro file.
/* *

evaluate.brown(and(X,Y) ,Value) :-
evaluate-brown(X, EX),
evaluate.brown (Y, EY),
C (EX 0 ; EY = 0), !,

Value 0

EX=1, !,
Value = EY

EY =, !,
Value - EX

!,Value = and(EX,EY)

evaluate-brown(or(X,Y) ,Value) :-

evaluate-brown(X,EX),
evaluate-brown(Y,EY),
C (EX a I ; EY z 1), !,

Value x I

EXO, !,
Value = EY

EY =, !,
Value = EX

!,Value = or(EX,EY)
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evaluate.brovn(neg(X) ,Value) :

evaluate..brovn(XEX),
(varCEX), !,

Value - neg(X)

EX=O- 0,
Value z 1

EX a 1, !
Value - 0

atom(EX),
Value - neg(EX)

EX -neg(N),
Value - N

EX - and(A1,A2), !
evaluate-.brovn~neg(A1),NAI),
evaluate-.brovn(negCA2) ,NA2),
Value a or(NAI,NA2)

EX a or(01,02), !
evaluate..brown(neg(D1),NOl),
evaluate-.brown(neg(02) ,N02),
Value = and(NO1,N02)

!,Value = neg(EX)
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/* */

/* The remaining clauses provide a method of simplification*/
/* and canonicalization of the functions required to verify*/
/* the fulladder and counter, namely, if and +. */
/* *

evaluate-brovn(if(Cond,Texp,Fexp),Value) :-
evaluate.brown(Cond,NCond),
evaluate.brown(Texp,NTexp),
evaluatebrown(Fexp,NFexp),
( C NCond = 1, !, /* Condition is true */

Value = NTexp ) ; /* return True exp */
C NCond = 0, !, /* If False then */
Value = NFexp ) ; /* return False exp */

C NTexp = NFexp, !, /* Condition irrelevant */
Value a NTexp ) ; /* if choices equal */

Value - if(NCond,NTexp,NFexp),!). /* otherwise return *1
/* simplified expression. */

evaluate-brown(X+Y,Z) :-
integer(X),
integer(Y), I,

Z is X + Y. /* force simplification of I + 2 = 3 */
evaluate.brown(X+Y,Z) :-

integer(Y),!, /* X not integer due to cut */
evaluate.brown(X,NevX),
Z a Y + NewX. /* canonicalize with integer first */

evaluate-brown(X+Y,Z) :-
!,evaluate.brown(X,NewX),
evaluate-brown(Y,NewY),
Z = NewX + NewY.

evaluate-brown(X,X). /* default simplification for complex */
/* structures like in(incA(X)). */
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/* Derive-Behaviors */

/* The two derive-behaviors clauses identify a specific */
/* output for the Module. The derive-behavior clauses
/* are then invoked to derive the behavior of that output */
/* for this particular Module.
/* The derive.behavior clause uses the part, connected, */
/* and output-.eqn clauses to derive an output's behavior */
/* and tie it to this instantiation of the module as
/* described in the in-line comments to follow.
/* The derive.and.equate.behaviors clause in verify.pro */
/* uses derive.behaviors to derive all Module outputs and */
/* determine their equivalence to the specified output. */
/* The arguments for derive.behaviors and derive-behavior*/
/* have the following meanings: */

/* Args: Module: e.g., Ixor','nand2', ... ,/
/* Form: A formula involving terminal-behavior. */
/* In the initial query, this may be */
/* something like 'out(X)'. */
/* Behavior: The resulting derived behavior.
/* In the present version of this procedure, it is assumed */
/* that all of the component-parts of Module have been
/* previously verified by verify-components. The verified */
/* components derived behavior is either asserted in a
/* derived.behavior clause or specified in an output-eqn */
/* if the component-part is a primitive.
/* *

derive.behaviors(Module,Form,Behavior) :- /* no state */
not state.eqn(Module,.),!,
output-eqn(Module,Form :- Spec-Behavior),
derive.behavior(Module,Form,Behavior).

derive-behaviors(Module,Form,Behavior) :- /* has state (0, */
output-eqn(Module,Form := Spec.Behavior),
derive-behavior(Module,Form,TBehavior),
substitute.state(Module,TBehavior,Behavior). /* might require the */

/* removal of some internal variables. */

A-16



/* Rules IA and IB derive behavior if Form is the name of a */
/* terminal to which some other terminal, in Module, is */
/* connected. Rule IA is invoked if the other terminal is a */
/* primary terminal in Module, i.e., one of its inputs or */
/* outputs. Rule lB is invoked if the other terminal belongs ,/

/* to one of Module's component-parts. ,/

derive.behavior(Module, Form, Source) :-

connected(Module, Source, Form),
primary.source (Source),!,
writeln(['Applying Rule IA to ',Form]).

derive.behavior(Module, Form, Behavior)
connected(Module, Source, Form),
derived-source(Source),!,

writeln(['Applying Rule lB to ', Form]),

derive-behavior(Module, Source, Behavior).

/* primary-source and derived source distinguish between a

/* Module input(primary.source) and a Component input
/* (secondary-source).

primary.source(Source) -

Source -.. [_,Arg],
var(Arg).

derived-source(Source) -

Source -.. [_,Arg],

Arg X.. [_,Arg2),
var(Arg2).
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/* Rule 2 is invoked if Form is the name of a terminal of one
/* of Hodule's component-parts. Rule 2A handles primitive */
/* components where Rule 2B handles non-primitive components. */
/* The only real difference is where to locate the Components */
/* derived behavior (output-eqn vs derived.behavior). If it */
/* is later decided to assert a derived.behavior clause for */
/* primitives, then Rule 2A can be removed. */

derive.behavior(Module, Form, Behavior)

Form \== 1,
Form -.. [F,G],

part(Module, G, Component),
not part(Component,.,.), /* Component is a primitive module */
outputeqn(Component, Form := OutForm),!,
writeln(['Applying Rule 2A to ', Form]),
vriteln( [Component,' ' 's output equation:')),
vriteln([' ', Form, ' :- ', OutForm)),

derive-behavior(Module, OutForm, Behavior). /* replace gate */
/* inputs with module variables *1

derive.behavior(Module, Form, Behavior)
Form \== 1,
Form -.. [F,G],
part(Module, G, Component), /* from cut, not primitive component */
/* previously verified due to verify-components in verify clause *1
derived.behavior(Component,Form,OutForm),!,
writeln(['Applying Rule 2B to ', Form]),
writeln( [Component,' ' 's derived behavior:')),
writeln([' ', Form, ' :a ', OutForm)),

derive.behavior(Module,OutForm,Behavior). /* replace gate */
/* inputs with module variables *1
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/* The remaining rules cover cases in which FORM is not the *
/* name of a terminal, but is a formula involving such name. *
/* This is where additional types of boolean or non-boolean.*
/* behavioral rules can be added in future work. These rules*/
/* simplify internal components of a specified behavioral *
/* structure. The evaluatel clause is a simple canonicalizer*/
/* which should also be modified if new behaviors are added. *

derive..behavior(Module, neg(Form), Behavior)
!,writeln(['Applying Rule 3 to ',negCForm))),
derive..behavior(Module, Form, Behi),
evaluatel~neg(Behi), Behavior).

derive..behavior(Modula, and(Formi.Form2), Beh)
,writeln(E'Applying Rule 4 to ',and(FormI,Form2))),

derive-.behavior(Module, Formi, Behi),
derive-.behavior(Module, Form2, Beh2),
evaluatei(andCBehi,Beh2), Beh).

derive..behavior(Module, or(Formi,Form2), Beh)
,writelnC E' pplying Rule 5 to ',or(FormI ,Form2)J),

derive-.behavior(Module, Formi, Behi),
derive-.behavior(Module, Form2, Beh2),
evaluatei(or(Behi,Beh2), Beh).

derive..behavior(Module, if(Cond,Texp,Fexp), Beh)
,writeln(['Applying Rule 6 to ',ifCCond,Texp,Fexp)1),

derive..behavior(Module, Cond, NCond),
derive..behavior(Module, Texp, NTexp),
derive..behavior(Module, Fexp, NFexp),
evaluatei(ifCNCond,NTexp,NFexp), Beh).

derive-.behavior(Module, First + Second, Beh) :

!,writeln(E'Applying Rule 7 to ',First + Second]),
derive..behavior(Module, First, Behi),
derive..behavior(Module, Second, Beh2),
evaluatei(Behi + Beh2, Beh).

/* The default rule catches behavior which we haven't yet *
/* described in a rule or which shouldn't be described. *

derive-.behavior(Module, Form, Form) /* default Rule *
writeln(['Applying default Rule to ',Form]).
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l* **

DERSTATE.PRO **
/, */

/* The clause derive-states finds a state variable
/* for a Module, how this state variable fits into the */
/* internal structure of the Module, derives the behavior*/
** of the internal structure, and substitutes the **
/* state variable name for the internal name whenever it **
/* appears in the derived behavior. The state-of,
/* state-map, and state.eqn facts from the specified */
/* Module description are used to identify the */
/* appropriate variables. Then the two clauses **
** derive-behavior and substitute-state are invoked to **
/* create the desired Next-State. */
l* **

derive.states(Module,State,NextState) : -
state.of(Module,State,Type), /* It has state */
state.map(Module,State,Internal), /* It's mapped to an internal part */
state.eqn(Part,Internal :- NextState/* internal state is function of **
derive-behavior(Module,NextState,Beh), /* inputs and previous state */
substitute-state(Module,Beh,NextState).

/* */

/* substitutestate */
** .1

/* This clause uses replace-all to replace occurrences */
/* of internal variables with the appropriate external */
/* black-box variable obtained by the state-map fact. */

substitute.state (Module, DerBeh, SubBeh) -

state.map (Module,External,Internal),
! ,writeln(['Derived Behavior: ',DerBeh]),
replaceall(Module, Internal,External,DerBeh,SubBeh),
writeln(['Substituted Behavior: ',SubBeh)).
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1* replace-.all *
/* Replaces each occurrence of in internal variable or *
/* other variables connected to this internal variable *
1* with the appropriate external balck-box: variable. *
1* The replace clauses allow you to traverse any type *
/* of behavioral structure and replace the appropriate *
1* variable name. New replace clauses will need to be *
1* added when new behavioral structures are created. *

replace-.all(odule,Old,New,OldBeh,SubBeh)
replace(Old,Now,Old~oh,SB),

C connected(Module,Old,Other)
output..eqn(Part,Other := Old) )!

replace..all (Module ,Other,Ne,, ?awSB),
evaluatelCNewSB,SubBeh). /* Simplify further if possible *

replace..all(Module.Old,New,BehBeh) :-. * no more connections *

repi ace (Old ,New ,Other, Other)-
atomic (Other),
writeC'Rule2') ,nl,!.

replace (Old, New ,Other, Other):-
var (Other),
write('Rule3') ,nl,!.

replace(Old,New,Other,Other)-
Old =.. [F,ArgI), /* keeps in(X) in(incA(X)) *
Other a.. [G,Arg2), /* from occuring, occurs test *
F \== G,
Cvar(Arg2) ; atomic(Arg2) ),/* already simplified *

writeC'Rule4') ,zl,..
replace(OldNew,and(X,Y) ,and(NewBl,X(ewB2))

,writeC'Rule and') ,nl,
replace(Old,New,X,NevBl),
replace (OldNew ,YNeuB2).

replace(Old,New,or(XY) ,or(NewBl,NewB2))
,writeC'Rule or') ,nl,

replace (Old ,New ,X ,NewBi),
replace(Old,New,Y,NewB2).

replace(Old,New,neg(X) ,neg(NewB))
,write('Rule neg') ,nl,

replace(Old,New,X,NewB).
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replace(Old,New,X + YNevBi + NewB2)
!,vriteC'Rule + * ,l
replaceCOld,New,X,NewBl),
replace(Old,New,Y ,NevB2).

replaceCOld,Nev, if(Cond,Texp,Fexp) ,if(NevBl ,NevB2,NevB3))
,vrite('Rule if') ,nl,

replace(Old,Nev,CondNevBI),
replaceCOldNev,TexpNevB2),
replace(Old,Nev,Fexp ,NevB3).

replace(OldNev,Other,NewB) :- * inCX) /== in~incA(X)) *
Old a.. EF,Argl),
Other -.. EFArg2),
(Cvar(krgi), not var(Arg2) )
Cnot var(Argi), var(Arg2) ))

replace COld,New,Arg2 ,NevArgs),
NevE a.. EF,NewkrgsJ, /* Old behavior or aid Behavior is*/
writeC'Rule struct'),nl,!. /* some other nested structure *

replace(Old,New, OldNew) :-
write('Rule 1'), ni,!. /* If you find X replace with Y *

replace(Old,Nev, Other,Othe.a)-
vrite('Default Rule'),nl. /* default rule. *
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1* *

/* EQBEH.PRO
/* This file contains procedures necessary to determine */
/* the equivalence of a derived behavior(next state) and */
/* specified behavior(next state).
/* The equal-behaviors and equal-states clauses are used */
/* by derive.and.equate.behaviors and derive-andequate. */
/* states to provide for every output/state equivalence. */
/* The primary methods of equivalence determination used */
/* are simiplification and boolean expansion. The eqb */
/* clauses will require expansion in further work. */
/* *

equal-behaviors (Module,Output ,Derived.Beh) -

output-eqn(ModuleOutput := Specified.Beh),/* get specified behavior */
eqb (Module,Derived.Beh,Specified.Beh).

equal-states (Module, NextstateDerived.State): -
state-eqn(Module,Nextstate := Function), /* get specified state */
eqb (Module,Derived.State,Function).

/, TRIVIAL IDENTITY */

eqb(M,XX) :-!.
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BOOLEAN EXPANSION *
/* The clause eq(NevDBNevSB) is the driver for the code *
1* found in boole2.pro which performs CPT Dukes boolean *
/* expansion. *

eqb(MDB,SB)
/* expandable(lO, fewer than too be determined combinations *

/* and boolean variables *
evaluate..dukes (DB .NewDB),
evaluate.dukes (SB ,NevSB),
writeln(['Does ',NewDB,' u')),writeln([' ',NewSB]),
eq(NewDB.NevSB).
writelnC EDEIP '1),vritelnC[ F' SI)
writeln( ['By Boolean Expansion']),!.

expandable(M) /* some how-.many function will *
port(M,.,.,oole),!. /* be required *

1* SIMPLIFICATION *

eqbCNDBSB)
evaluatel(DB ,NDB),
evaluatel(SB,NSB),
CDB \'NDB;
SB \=NSB )

writelnC['Derived behavior is: ',DB)),
eqb(M,NDB,NSB), !
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/* VERIFY.PRO */
/* This clause provides the user interface for the entire */
/* VERIFY Prototype. When a user types verify(Module),

/* after loading the appropriate files, the verify clause */
/* invokes other clauses to recursively verify each */
/* Module. Each verify clause handles a different type */
/* of Module as noted beside each head. The part and */
/* state-eqn clauses provided in Module descriptions are */
/* used to determine Module type. Other clauses used are */
/* the following:

/* */

/* deriveand-equate.behaviors: provides mechanism to */

derive behavior for each output, and determine */
I* equivalence to specified behavior. */
/* derive-and-*equatestates: provides mechanism to
/* derive behavior for each next state, and */
/* determine equivalence to specified next state. */
/* verify-components: uses verify to recursively */
/* verify components prior to deriving component

behavior and next state.

verify(Module) :- /* previously verified module */

verified(Module),!,

writeln(['>>>',Module,' previously verified >>>']).
verify(Module) :- /* primitive module with no state */

not part(Module,.,.),
not stateeqn(Module,.),!,

/* For a primitive module, behavior x structure. */
/* No need to reassert this in the database, since it can
/* be taken from the behavioral specification. */
/* output.eqn(Module, Output := Behavior). ALREADY EXISTS */
/* If it is decided that derived-behavior should appear as**/

/* asserta(derived-behavior(Module,Output,Behavior)), the */
/* derive-behavior clause dealing with primitives can be */
/* removed. A similar decision is required for the
/* asserta(verified(Module)) for a primitive Module. With**/
/* only one possible verified clause per Module, I felt */
/* the space required was minimal for the time savings. */
/*************************************************************

asserta(verified(Module)),
writeln(E'>>>',Module,' primitive (needs no verificatioi)>>>')).
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verify(Module) :- /* primitive module with state *1

not part(Module,_,.),!,
/* Also, no need to reasert next state either.

/* state.eqn(Module,Nextstate := Function) ALREADY EXISTS */

asserta(verified(Module)),
writeln(['>>',Module,' primitive (needs no verification) >']).

verify(Module) :- /* non-primitive with no state */
not state-eqn(Module,_),
writeln(['>>> Attempting to verify ',Module,'>>']),
verify.components(Module),!,

/* Derive behavior for all outputs and if equal to */
/* specified behavior, then assert in database. This may */
/* require later garbage collection if the earlier outputs */
/* are okay, but a later output is not. This would require */
/* a cleanup to check the verified(Module) against the */
/* derived.behavior and next-state clauses. If the clauses */
/* are not consistent, then remove all derive-behavior and */
/* next-state clauses. */

derive.andequate.behaviors(Module),
asserta(verified(Module)),
writeln(['<<<Success! Behavior of',Xodule,'meets its specification.']).

verify(Module) :- /* non-primitive with state */
writeln(['>>> Attempting to verify ',Module,' >')),
verify.components(Module),

derive-and.equatebehaviors(Module),
deriveand.equate.states(Module),
asserta(verified(Module)),
writeln(['<<<Success! Behavior of',Module,'meets its specification.']).
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/* The first clause of the next three procedures always *
/* succeeds. We need a way to check that all components *
/* are verified, and all behaviors and next-.states are
/* equivalent. The second clause of each procedure does *

1* this checking by generating lists of components, states,*/
/* and outputs and comparing the length of the two lists *
/* for the states and outputs since no two state or output *
/* names should be generated twice for a single module. *
/* Setof will generate all Components for a single module, *

/* so we just check to see if that component was actually *
/* verified. *

derive-.an-equate..behaviors (Module)-
derive..behaviors (Module, upu,Derived..Beh),
equal-.behaviors (Module ,Output ,Derived-.Beh),
asserta(derived.behavior (Module ,Output ,Derived..Beh)),
fail.

derive.and..equate-.behaviors (Module):-
setof (Outputs ,output..eqn(Module ,Outputs :=-) ,Outlist),
length (Outlist ,Outnum),
setof (Outputs ,derived-behavior(Module,Outputs,.) Derlist),
length(Derlist ,Dernum),
Outnum -:= Dernum.

derive.and-.equate-.behaviors (Module)-
retract (derived-.behavior(Module,,..)),
fail.

derive-.and-.equate..states (Module)-
derive..states (Module ,Stt,Next-.State),
equal..states (Module ,St,Next.State),
asserta(next.state (Module ,State, Next..State)),
fail.

derive-.and-.iquate..states (Module)-
setof(States,state-.eqn(Module,States :- -.) ,Statelist),
length(Statelist ,Statenum),
setof (States ,next..state(Module,States,.) ,Derlist),
length(Derlist ,Dernum),
Statenum :=Dernum.

derive..and-equate.states (Module)-
retract (next..state (Module,..,-)),
fail.
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verify-.components (Nodule):-
part (Module,.,Component),
verify (Component),
fail.

verify-components (Nodule):-
setof (Component ,part (Module,- ,Component) ,Complist),
parts-.verified(Complist),
vriteln([lcomponent list is 1. Complist]).

/* parts..verfied - This procedure ensures that all parts *
/* (Components) of a Nodule have been verified. A list *
1* of parts(Components) generated by setof is passed, *
/*and parts-.verified checks that each one has an asserted*/
/* verified fact. *

parts-.verified([0).
parts..verified( [Component ITaill)

verified(Component),
parts-.verified(Tail).

A-28



/* Counter.pro

1* Module definitions for the counter example *
in Barrow's VERIFY article.

/* -------------- INCREMENTER ---------------------*

module..name(inc).

port (inc. inCAnlnc) ,input, integer).
port(inc ,out(Anlnc) ,output, integer).

1* Behavior Specification *

output-.eqn(inc, out(Anlnc) I + in(Anlnc)).

/*--------------- MULTIPLEXER ---------------------*

module-.name(mux).

port (mux,inOCAMux) ,i ,tinteger).
port(muxinl(AMux) ,input,integer).
port (mux, switch(AMux) ,input ,boole).
port Cmu,out (AMux) ,output ,integer).

/* Behavior Specification *

output-.eqn(mux, out(AMux) : if(suitch(AMux),
inl(AMux),
inOCAMux))).
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/* -- -- --- -- -- --- REGISTER --- - - - -- - - -

module..name(reg).

port (reg, inCAReg) ,inu.integer).
port (reg,ou(AReg) ,output,inee)

/* Behavior Specification */

state-.of(reg~contentsCAReg),inegr)

output-.eqn~reg,out(AReg) :z contents(AReg)).

state-.eqn(reg,contentsCAReg) := inCAaeg)).

/* ----------------- COUNTER ---------------------*

module-.name(counter).

port (counter, inCACounter) ,u, integer).
port (counter,ctrl(ACounter) ,input ,boole).
port (counter ,out (ACounter) ,output, integer).

part Ccounter,muxA(ACounter) ,zux).
part (counter ,regA(ACounter) ,reg).
part Ccounter,incACACounter) ,inc).

connected(counter,ctrl(ACounter) ,svitch(muxA(ACounter))).
connected(counter,in(ACounter) ,inl~muxA(ACounter))).
connected(counter,out(muxA(ACounter)) ,in(regA(ACounter))).
connected~counter,out(regA(ACounter)) ,in(incA(ACounter))).
connected(counter,out(incA(ACounter)) ,inO(muxA(ACc.unter))).
connected~counter,out(regACACounter)) ,out(ACounter)).

/* Behavior Specification */

state..of (counter, count (ACounter) ,integer).
state..map(counter,count(ACounter) ,contents(regA(ACounter))).

output-eqn(counter,outCACounter) :=ccunt(ACounter) ).

state-.eqn(counter, count(ACounter) :z if(ctrl(ACounter),
inCACounter),
count(ACounter) + W).
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XOR.PRO *
/* This file provides the module descriptions for 2-input *
/* nands and exclusive ors. This file is required when *
/* verifying a fulladder.

/* ----- Structural Specification for 2-input NAND ---- *

module..name (nand2).

port (nand2,inO ANand2),input ,boole).
port Cnand2 ml (ANand2) ,input ,boole).
port (nand2 ,out (ANand2) ,output ,boole).

/* Behavioral Specification *

output-.eqn Cnand2,
out(ANand2) := or( neg(inO(ANand2)), neg(inlCAand2)).

/* Structural specification for a two-input Exclusive-OJR

module..name(xor).

port (xor,inO(AnXor) ,input,boole).
port Cxor, ml (AnXor) ,input ,boole).
port~xor,out(Anlor) ,output,boole).

part (xor,gl CAnXor) ,nand2).
part (xor ,g2(AnXor) ,nand2).
part (xor~g3 (AnXor) ,nand2).
part (xor,g4 (AnXor) ,nand2).

connectedI~xor,inOCAnXor),inO(gl(AnXor))).
connected(xor,inl(AnXor) ,inl(gl(AnXor))).
connected(xor,inO(AnXor) .mnO~g2CAnXor))).
connected~xor,out ~gl(AnXor)) ,inl Cg2(AnXor))).
connected(xor,out~gl(AnXor)) ,in~o~g3(AnXor))).
connected(xor,inl(AnXor) ,ini(g3(AnXor))).
connected(xorhout(g2(AnXor)) ,inO(g4(AnXor))).
connected(xor,out(g3CAnXor)) ,inl(g4(AnXor))).
connected(xor,out~g4CAnXor)) ,out(AnXor)).
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/* Behavioral Specification for a two-input XOR *

output..eqn~xor,
out(Anlor) :~or( and( neg(inO(AnXor)),

inl(AnXor) )
and( inOCAnXor),

neg(inl(AnXor)) ))
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FADDXOR.PRO *
/* This file provides the specification of a fulladder *
/* composed of nand and exclusive or gates. The file *
/* xor.pro must also be loaded to provide the module *
/* specifications for nand2 and xor. *

/* Structural specification for a full adder with xors *

module..name(faddxor).

port(faddxor,x(Afaddxor) .input ,boole).
port(faddxor,y(Afaddxor) ,input ,boole).
portCf addxor,cinCAf addxor) ,input~boole).
port (faddxor,outcarry(Afaddxor) ,output ,boole).
port(faddxor ,outsum(Afaddxor) .output ,boole).

part Cfaddxor~giCAfaddxor) ,nand2).
part(faddxor,g2(Afaddxor) ,nand2).
part(faddxor~g3CAfaddxor) ,nand2).
part Cfaddxor~g4(Afaddxor) ,xor).
part(faddxor,gS(Afaddxor) ,xor).

connected(faddxor,x(Afaddxor) ,inO(giCAfaddxir))).
connected(faddxor,y(Afaddxor) .ini (gi CAfaddxor))).
connected(faddxor,cinCAfaddxor) ,inO~g2(Afaddxor))).
connected(faddxor,out(g4CAfaddxor)) ,ini (g2(Afaddxor))).
connected(faddxor,out(gi (Afaddior)) ,inO(g3(Afaddxor))).
connected(faddxor,out(g2CAfaddxor)) ,ini(g3(Afaddxor))).
connected(faddxor,x(Afaddxor) .inO~g4CAfaddxor))).
connectedCf addxor ,y (Afaddxor) ,ini (g4 CAf addxor))).
connected(faddxor,out~g4(Afaddxor)) ,inO~g5(Afaddxor))).
connected(faddxor,cin(Afaddxor) .ini (gS(Afaddxor))).
connected(faddxor,out(gS(Afaddxor)) ,outsum(Afaddxor)).
connected(faddxor,out(g3CAfaddxor)) ,outcarry(Afaddxor)).
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/* Behavioral Specification

output-.eqn(faddxor,
outcarry (Afaddxor):

or( and( x(Afaddxor),y(Afaddxor)),
and( cin(Afaddxor),

xor( x(Afaddxor),y(Afaldxor)) ))

outsuzn(Afaddxor):
xor( xor(x(Afaddxor) ,y(Afaddxor)),

cin(Afaddxor)).

A-34



Appendix B. Sample Sessions

This Appendix includes sample runs of a counter-circuit and fulladder on Prolog-1

and Quintus Prolog.

/* This file loads the appropriate files to verify a
/* a counter with Quintus Prolog. This is invoked by */
/* typing ['qctrld.pro'].

7- ['qops.pro','eval.pro','derbeh.pro','derstate.pro','counter.pro'].
7- ['boole2.pro','eqbeh.pro','verify.pro'].

Sample Run for a counter-circuit on Quintus Prolog:

[1] cub prolog
Quintus Prolog Release 2.4 (VAX, Ultrix 2.0-2.2)
Copyright (C) 1988, Quintus Computer Systems, Inc. All rights reserved.
1310 Villa Street, Mountain View, California (415) 965-7700

1 ?- ['qctrld.pro'].
[consulting /usr/users/gce9Od/ksparks/ijan91/qctrld.pro...]
[consulting /usr/users/gce9d/ksparks/iSjan9l/qops.pro...

[Undefined procedures will just fail ('fail' option)]
[qops.pro consulted 0.367 sec 1,092 bytes]
[consulting /usr/users/gce9Od/ksparks/16jan9l/eval.pro...)

[WARNING: Singleton variables, clause 3 of evaluate-brovn/2: F)
[eval.pro consulted 1.050 sec 2,920 bytes]
[consulting /usr/users/gce9Od/ksparks/15jan91/derbeh.pro...)

[WARNING: Singleton variables, clause I of derive.behaviors/3: Spec-Behavior]
[WARNING: Singleton variables, clause 2 of derive.behaviors/3: Spec-Behavior]
[WARNING: Clauses for derive.behavior/3 are not together in the source file]
[WARNING: Siagleton variables, clause I of derive-behavior/3: F)
[WARNING: Singleton variables, clause 2 of derivebehavior/3: F]
[WARNING: Singleton variables, clause 8 of derive-behavior/3: Module]
[derbeh.pro consulted 1.466 sec 3,220 bytes]
[consulting /usr/users/gce9Od/ksparks/15jan91/derstate.pro...]
[WARNING: Singleton variables, clause I of derive.states/3: Type, Part]
[WARNING: Singleton variables, clause 1 of replace.all/5: Part]
[WARNING: Singleton variables, clause 2 of replace-all/5: Module, Old, New]
[WARNING: Singleton variables, clause I of replace/4: Old, New]
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[WARNING: Singleton variables, clause 2 of replace/4: Old, New]
[WARNING: Singleton variables, clause 3 of replace/4: New, Argl]
[WARNING: Singleton variables, clause 11 of replace/4: Old, New]
[derstate.pro consulted 1.384 sec 2,872 bytes]
[consulting /usr/usars/gce9Od/ksparks/15jan9l/counter.pro...]

[WARNING: Singleton variables, clause I of port/4: AnInc]
[WARNING: Singleton variables, clause 2 of port/4: AnInc]
[WARNING: Clauses for module.name/1 are not together in the source file]
[WARNING: Clauses for port/4 are not together in the source file]
[WARNING: Singleton variables, clause I of port/4: AMux)
[WARNING: Singleton variables, clause 2 of port/4: AMux]
[WARNING: Singleton variables, clause 3 of port/4: AMux)
[WARNING: Singleton variables, clause 4 of port/4: AMux)
[WARNING: Clauses for output-eqn/2 are not together in the source file]
[WARNING: Singleton variables, clause I of port/4: AReg]
[WARNiNG: Singleton variables, clause 2 of port/4: AReg]
[WARNING: Singleton variables, clause 1 of state.of/3: AReg]
[WARNING: Singleton variables, clause I of port/4: ACounter]
[WARNING: Singleton variables, clause 2 of port/4: ACounter]
[WARNING: Singleton variables, clause 3 of port/4: ACounter]
[WARNING: Singleton variables, clause I of part/3: ACounter]
[WARNING: Singleton varie'les, clause 2 of part/3: ACounter]
[WARNING: Singleton variables, clause 3 of part/3: ACounter]
[WARNING: Clauses for state.of/3 are not together in the source file]
[WARNING: Singleton variables, clause 1 of state.of/3: ACounter]
[WARNING: Clauses for stateeqn/2 are not together in the source file]
[counter.pro consulted 1.766 sec 3,804 bytes]
[consulting /usr/users/gce9Od/ksparks/15jan9l/boole2.pro...]

[WARNING: Singleton variables, clause I of remove.x_1/3: X]
[WARNING: Singleton variables, clause 2 of removex.1/3: X]
[WARNING: Singleton variables, clause 3 of remove.x-1/3: Arg2]
[WARNING: Singleton variables, clause 4 of remove-x_1/3: Arg, Argl, Arg2]
[WARNING: Singleton variables, clause 5 of remove.x-1/3: Arg2]
[WARNING: Singleton variables, clause 6 of remove.x_1/3: Arg2]
[WARNING: Singleton variables, clause 1 of remove.x_0/3: X1
[WARNING: Singleton variables, clause 2 of remove-x_0/3: X)
[WARNING: Singleton variables, clause 3 of remove.x_0/3: Arg2]
[WARNING: Singleton variables, clause 4 of removex_0/3: Arg2]
[WARNING: Singleton variables, clause 5 of remove.x_0/3: Arg2]
[WARNING: Singleton variables, clause 6 of removexO/3: Arg2]
[boole2.pro consulted 2.600 sec 6,820 bytes]
[consulting /usr/users/gce9Od/ksparks/15jan91/eqbeh.pro...]

[WARNING: Singleton variables, clause I of eqb/3: M]
[WARNING: Singleton variables, clause 2 of eqb/3: M]
[WARNING: Clauses for eqb/3 are not togethor in the source file]
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[eqbeh.pro consulted 0.600 sec 1,244 bytes]

[consulting /usr/users/gce9Od/ksparks/lSjan9l/verify.pro...I
[verify.pro consulted 1.134 sec 3,036 bytes]
[qctrld.pro consulted 11.166 sec 26,776 bytes]
yes

I ?- verify(counter).

>>> Attempting to verify counter>>>

>>>mux primitive (needs no verification)>>>
>>>reg primitive (needs no verification)>>>

>>>inc primitive (needs no verification)>>>
Applying Rule lB to out(.681)

Applying Rule 2A to out(regA(_681))
reg's output equation:

out(regA(.681)) :- contents(regA(_681))
Applying default Rule to contents(regA(.681))
Derived Behavior: contents(regA(_681))
Rule 1
Rule4
Rule4
Rule4
Value of count(.681):

count_681)
Value of count(-681):

count_681)
Value of count(_681):

count(.681)
Substituted Behavior: count(_681)
Applying Rule 1B to in(regA(.1274))
Applying Rule 2A to out(muxA(.1274))
mux's output equation:

out(muxA(.1274)) :- if(svitch(muxA(.1274)),in1(muxA(_1274)),inO(muxA(_1274)))
Applying hale 6 to if(svitch(muxA(_1274)),inl(muxA(_1274)),inO(muxA(_1274)))
Applying Rule 1A to switch(muxA.1274))
Applying Rule IA to inl(muxA(1274))
Applying Rule IB to inO(muxA(.A274))
Applying Rule 2A to out(incA(.1274))
inc's output equation:

out(incA(.1274)) := 1+in(incA(_1274))
Applying Rule 7 to l+in(incA(.1274))
Applying default Rule to 1
Applying Rule IB to in(incA_1274))
Applying Rule 2A to out(regA.1274))
reg's output equation:

out(regA(_1274)) :- contents(regA(.1274))
Applying default Rule to contents(regA(1274))
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Value of 1.contents(regA..1274)):
1.contents (regA C..1274) )

Value of if(ctr1Cj1274) ,inC..1274),1+contents~regA...274))):
if(ctrl(-i274) ,inC-1274) ,1.contents(regAC.1274)))

Derived Behavior: if(ctrl(-i274) ,inC.1274) ,14contents~regA(-l274)))
Rule if
Rule4
Rule4
Rule +
Rule2
Rule 1
Rule if
Rule4
Rule4
Rule +
Ru1e2
Rule4
Rule if
Rule4
Rule3
Rule struct
Rule +
Rule2
Rule4
Rule if
Rule4
Ru1e4
Rule +
Rule2
Rule4
Value of if Cctrl(-1274) ,in(_,1274) ,14countC.1274)):

if(ctrlC..1274) .inC.1274) ,1+couritC-i274))
Value of if(ctrlC.1274) ,in(-i274) ,1+count(-1274)):

if(ctrlC.1274) ,inC.1274) , +count(-1274))
Value of if(ctrl(-1274) ,inC-1274) ,1.cont(-1274)):

if(ctrlC.1274) ,in(..1274) ,i+coumtC..1274))
Substituted Behavior: if(ctrl(-l274) ,inL-1274) ,1.count(-l274))
Does if(ctrlC.1274) ,inC-1274) ,coumt(-1274)*i)=

if(ctrl(-1274) ,inL-1274) ,1+count(-l274))
Value of if Cctrl(-i274) ,inC..1274) ,countC.1274)+1):

if(ctrlC..1274) ,inC-1274) ,1~count(_1274))
Derived behavior is: if(ctrl(-1274) ,inC..1274) ,count(-1274).1)
<<< Success! Behavior of counter meets its specification.
yes

I -halt.
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/* This file load. the appropriate file. to verify a *
/* a counter on PROLOG-1. This is invoked by typing *

1* Ea:ctrload']. *

?- Ea:ops','a:eval'.la:derbeh','a:derstate','a:counter').
?- Ea:boole2' , a:eqbeh' , a:verify'J.

Sample run for a counter-circuit on PROLOG-1:

B: \>prolog

+-------------------------------------------------

IMS-DOS Prolog-1 Version 2.2
ICopyright 1983 Serial number: 0001213
IExpert Systems Ltd.
IOxford U.K.

+-------------------------------------------------+

?- ['a:ctrload'].
a:ops consulted.
a:eval consulted.
a: derbeh consulted.
a: derst ate consulted.
a: counter consulted.
a:boole2 consulted.
a:eqbeh consulted.
a: verify consulted.
a: ctrload consulted.
?- verify~counter).
>>> Attempting to verify counter>
>>mux primitive (needs no verification)>
>>reg primitive (needs no verification)>

>>>inc primitive (needs no verification)>
Applying Rule lB to out(..99)
Applying Rule 2A to out(regAC-99))
reg's output equation:

out(regAC-99)) :- contents(regAC.99))
Applying default Rule to contents(regAC-99))
Derived Behavior: contents (regA C99))
Rule 1
Rule4
Rule4
Rule4
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Value of count(..99):
count (.99)

Value of countC..99):
count (.99)

Value of countC.99):
count (-99)

Substituted Behavior: count (.99)
Applying Rule lB to in(regA(-171))
Applying Rule 2A to out(muxAC.171))
mux's outpuat equation:

out(muxA(-171)) := if(svitch(muxA(-171)),ini(muxA(-17i)),ino(muxACA17l)))
Applying Rule 6 to if(svitch(muxA(.171)) ,ini(rnuxAC...7l)) ,inO(muxA(-171)))
Applying Rule IA to switch(muxA(-171))
Applying Rule IA to inl(muxA(..171))
Applying Rule lB to inO(muxA(-l71))
Applying Rule 2A to out(incA(..171))
inc's output equation:

out~incAC.171)) :- 1+in(incA...71))
Applying Rule 7 to I+in(incA(-l71))
Applying default Rule to 1
Applying Rule lB to in(incAC.171))
Applying Rule 2A to out(regA(..171))
reg's output equation:

out~regA(..171)) :- contents(regAC.171))
Applying default Rule to contents(regA(-i71))
Value of l+contents(regA(-l71)):

l+contents (regA..171))
Value of if(ctrl(l7l) ,in(i71) ,1+contents(regA(-17i))):

if(ctrl(..171) ,in(171) ,1+contents(regA(-l7l)))
Derived Behavior: if(ctrl(171) ,in(..171) ,1+contents(regA(-17l)))
Rule if
Rule4
Rule4
Rule +

Rule2
Rule 1
Rule if
Rule4
Rule94
Rule +

Ruli2
Rule4
Rule if
Rule4
Rule3
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Rule struct
Rule +
Rule2
Rule4
Rule it
Rule4
Rule4
Rule +
Rule2
RuI94
Value of if(ctrl(l7i) ,inC.171) ,1+countt.171)):

Value of if(ctrlC-171) ,in(..171),1+count(..171)):
if(ctrl(i71) ,inC.171) ,1+couit(-.171))

Value of if Cctrl(171) ,inC.17i) ,1.countC..171)):

Substituted Behavior: if(ctrlC.171) ,in(-1l) ,1+count(-17l))
Does if(ctrl(-l71) in(l71) ,count(-17l1) =

if(ctrl(-.171) ,in(171) ,i+count(-.171))
Value of if(ctrl(-i7i) ,in(-l7l) count(-i71)+1):

if(ctrl(..171) ,in(-.171) ,1+count(-i7i))
Derived behavior is: if(ctrl(171) ,in(.171),countC.171)+1)
<< Success! Behavior of counter meets its specification.

yes
?- halt.
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/* This file loads the appropriate files to verify a
/* a fulladder with Quintus Prolog. This is invoked by */
/* typing ['qfaddld.pro']. */

- ['qops.pro','eval.pro','derbeh.pro').
?- ['derstate.pro',xor.pro','faddxor.pro,].
?- ['boole2.pro','eqbeh.pro','verify.pro').

Sample run for a full-adder circuit on Quintus Prolog:

[1) cub prolog

Quintus Prolog Release 2.4 (VAX, Ultrix 2.0-2.2)
Copyright (C) 1988, Quintus Computer Systems, Inc. All rights reserved.
1310 Villa Street, Mountain View, California (415) 965-7700

1 ?- ['qfaddld.pro').
[consulting /usr/users/gce90d/ksparks/15jan9l/qfaddld.pro...I
[consulting /usr/users/gce9Od/ksparks/15jan9l/qops.pro...I

[Undefined procedures will just fail ('fail' option)]
[qops.pro consulted 0.383 sec 1,092 bytes]

[consulting /usr/users/gce9Od/ksparks/15jan9l/eval.pro...]
[WARNING: Singleton variables, clause 3 of evaluate-brown/2: F]

[eval.pro consulted 1.050 sec 2,936 bytes]
[consulting /usr/users/gce9Od/ksparks/15jan9l/derbeh.pro...]

[WARNING: Singleton variables, clause I of derive-behaviors/3: Spec-Behavior]
[WARNING: Singleton variables, clause 2 of derive.behaviors/3: Spec-Behavior]
[WARNING: Clauses for derive.behavior/3 are not together in the source file]
[WARNING: Singleton variables, clause I of derive.behavior/3: F]
[WARNING: Singleton variables, clause 2 of derive.behavior/3: F]
[WARNING: Singleton variables, clause 8 of derive.behavior/3: Module]
[derbeh.pro consulted 1.450 sec 3,220 bytes]
[consulting /usr/users/gce9Od/ksparks/1jan9l/derstate.pro...]

[WARNING: Singleton variables, clause I of derive-states/3: Type, Part]
[WARNING: Singleton variables, clause I of replaceall/5: Part]
[WARNING: Singleton variables, clause 2 of replace.all/5: Module, Old, New]
[WARNING: Singleton variables, clause 1 of replace/4: Old, New]
[WARNING: Singleton variables, clause 2 of replace/4: Old, New]
[WARNING: Singleton variables, clause 3 of replace/4: New, Argil]
[WARNING: Singleton variables, clause 11 of replace/4: Old, New]
[derstate.pro consulted 1.383 sec 2,904 bytes]
[consulting /usr/useru/gce90d/ksparks/15jan9l/xor.pro...]

[WARNING: Singleton variables, clause 1 of port/4: ANand2]
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[WARNING: Singleton variables, clause 2 of port/4: ANand2]
[WARNING: Singleton variables, clause 3 of port/4: ANanr2]

[WARNING: Clauses for module.name/1 are not together in the source file]

[WARNING: Clauses for port/4 are not together in the source file]

[WARNING: Singleton variables, clause 1 of port/4: AnXor]
[WARNING: Singleton variables, clause 2 of port/4: AnXor
[WARNING: Singleton variables, clause 3 of port/4: AnXor]
[WARNING: Singleton variables, clause I of part/3: AnXor
[WARNING: Singleton variables, clause 2 of part/3: AnXor
[WARNING: Singleton variables, clause 3 of part/3: AnXor]
[WARNING: Singleton variables, clause 4 of part/3: AnXor]
[WARNING: Clauses for output-eqn/2 are not together in the source file]
[xor.pro consulted 1.184 sec 2,616 bytes]
[consulting /usr/users/gce90d/ksparks/15jan9l/faddxor.pro...]

[WARNING: Singleton variables, clause 1 of port/4: Afaddxor]
[WARNING: Singleton variables, clause 2 of port/4: Afaddxor]
[WARNING: Singleton variables, clause 3 of port/4: Afaddxor]
[WARNING: Singleton variables, clause 4 of port/4: Afaddxor]
[WARNING: Singleton variables, clause 5 of port/4: Afaddxor
[WARNING: Singleton variables, clause I of part/3: Afaddxor]
[WARNING: Singleton variables, clause 2 of part/3: Afaddxor]
[WARNING: Singleton variables, clause 3 of part/3: Afaddxor]
[WARNING: Singleton variables, clause 4 of part/3: Afaddxor]
[WARNING: Singleton variables, clause 5 of part/3: Afaddxor)
[faddxor.pro consulted 1.183 sec 2,368 bytes]
[consulting /usr/users/gce9Od/ksparks/15jan91/boole2.pro...]
[WARNING: Singleton variables, clause I of remove.x.1/3: X1
[WARNING: Singleton variables, clause 2 of remove.x-1/3: X3
[WARNING: Singleton variables, clause 3 of remove-x_1/3: Arg2]
[WARNING: Singleton variables, clause 4 of remove.x_1/3: Arg, Argl, Arg2]
[WARNING: Singleton variables, clause 5 of remove-x_1/3: Arg2]
[WARNING: Singleton variables, clause 6 of remove-.x./3: Arg2]
[WARNING: Singleton variables, clause I of remove.x.O/3: X]
[WARNING: Singleton variables, clause 2 of remove.x.0/3: X1

[WARNING: Singleton variables, clause 3 of removex.O/3: Arg2]
[WARNING: Singleton variables, clause 4 of removex.0/3: Arg2]
[WARNING: Singleton variables, clause S of remove.x.0/3: Arg2]
[WARNING: Singleton variables, clause 6 of remove.x_0/3: Arg2]
[boole2.pro consulted 2.583 sec 6,900 bytes]
[consulting /usr/users/gce9Od/ksparks/15jan9l/eqbeh.pro...]
[WARNING: Singleton variables, clause I of eqb/3: M)
[WARNING: Singleton variables, clause 2 of eqb/3: M)
[WARNING: Clauses for eqb/3 are not together in the source file]
[eqbeh.pro consulted 0.600 sec 1,268 bytes]
[consulting /usr/users/gce90d/ksparks/15jan9i/verify.pro...]
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[Yerify.pro consulted 1.100 sec 3,004 bytes]
Eqfaddld.pro con~sulted 11.800 sec 27,116 bytes]
yes
I ?- verify(faddxor).
>>> Attempting to verify faddxor>>>
>>nand2 primitive (needs no verification)>
>>nand2 previously verified >
>>nand2 previously verified >
>>> Attempting to verify xor>
>>nand2 previously verified >
>>nand2 previously verified >
>>nand2 previously verified >
>>nand2 previously verified >

Applyin& Rule lB to out(-1068)
Applying Rule 2A to out(g4C-1068))
nand2's output equation:

out(g4(.1068)) := or(neg(inO(g4..1068))) ,neg~inl(g4..1068))))
Applying Rule 5 to or(neg(inO(g4..1068))) ,neg~inl(g4C.1068))))
Applying Rule 3 to neg(inO(g4(-1068)))
Applying Rule lB to inO(g4C-1068))
Applying Rule 2A to out(g2(..1068))
nand2's output equation:

out(g2C.1068)) :a or(neg(ino(g2(..i068))) ,negt'inl(g2Cl1068))))
Applying Rule 5 to or(neg(inO(g2(..1068))) ,neg(inl(g2C.1068))))
Applying Rule 3 to neg(inO(g2C..1068'))
Applying Rule 1A to in0(g2(-! 068))
Value of neg(inO~LO68)):

neg(inOC.1068))
Applying Rule 3 to neg(inl(gC..1068))
Applying Rule lB to inl(gV-1068))
Applying Rule 2A to out~gl(-lO68))
nand2's output equation:

out(glC.1068)) :- or~neg(inO(gl(..1068))),neg(inl(gl..1068))))
Applying Rule 5 to or(neg(inO(gl1C1068))),neg(in(gl(.1068))))
Applying Rule 3 to neg(inO(gl(..1068))
Applying Rule IA to inO(gl(-iO6B))
Value of neg(inO(..1068)):

neg~inO(-lO68))
Applying Rule 3 to neg(inl(gl(-1068))
Applying Rule IA to inl~gl1C1068))
Value of neg(inlC-i068)):

neg(inl C. 168) )
Value of or(neg(in0(..1068)) ,neg(inlC.1068))):

or(neg(inO(_lO6B)) ,neg(inlC..1068)))
Value of neg(or(neg~inOC.1068)) ,neg(in1C-1068)))):
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azd(inO(-1068) , ml(_..068))
Value of or~neg(inO(-lO68)) ,and(in0(..1068),inl(..1068))):

or(neg(inOCAO068)) ,and~inOC..1068) ,inl C..1068)))
Value of neg(or(neg(inOC.1068)) ,and(in0(..1068),inl(..1068)))):

mnd~inOC.1068) ,or(neg(inO(-lO68)) ,neg(inl(-iO68))))

Applying Rule 3 to neg(inI(g4C..1068)))
Applying Rule lB to inl(g4C.1068))
Applying Rule 2A to out(g3..1068))
nand2's output equation:

out(g3C..1068)) :a or(neg(in0(g3(..1068))) ,neg~inl(g3C.1068))))

Applying Rule 5 to or(neg(inO~g3LlO68))),neg(in(g3..1068))))
Applying Rule 3 to neg(inO~g3CAOS68)))
Applying Rule lB to inO(g3CI1068))
Applying Rule 2A to out(giC-1068))
nand2's output equation:

out(gILiO68)) :a or(neg(ino(gi(..i068))) ,neg~ini~gl..1068))))
Applying Rule 5 to or~neg~inO(glC..1068))) ,neg(inl(gl..1068))))
Applying Rule 3 to neg(inO(g1ClO068)))
Applying Rule IA to inO(g1LlO068))
Value of neg(inO(-lO68)):

neg~inOC.1068))
Applying Rule 3 to neg(inl(gL(.1068)))
Applying Rule IA to ini~gl(-lO6B))
Value of neg(inl(-lO68)):

neg(inl C..1068))
Value of or(neg(inO(-.1068)),neg(inlC..1068))):

or(neg(inO..1068)) ,neg~ini(-iO68)))
Value of neg(or(negino(.1068)) ,neg~inlC...i68)))):

and(in.OC.1068) ,inliO-168))
Applying Rule 3 to neg~irl.(g3C..1068)))
Applying Rule UA to inl(g3C..1068))
Value of neg(ini(-1O68)):

neg(inlC.1068))
Value of or(and(inO(-1O68) ,inl(..1068)) ,neg(inlC..1068))):

or(and(inOC..i068) ,iniC..1068)) ,neg(iniC.1068)))
Value of neg~or(and(inO(..1068),inl(-lO68)) ,neg~inl(-lO68)))):

and(or(neg(ino(.1068)) ,neg(ini(..1068))) ,inl(-iO68))

Value of or(and(inOC..1068) ,or(neg(inO(-.1068)) ,neg~inl(-1O6B)))),
and(or(neg(inoC.1068)) ,neg(inl(..1068))) ,inl(-1O68))):

or(and(in0(..1068) ,or~neg~inO(..1068)) ,neg(inlC..1068)))),
and(or(neg(inoC..1068)) ,neg(inlC.1068))) ,in1Cj0O68)))

Does or(and(inOC..1068)or(neg(inO(-1068)) ,neg(inlC.1068)))),
and(or(neg(inoC..1068)),neg(inlC..1068))),inlC.1068)))

or(and(neg(ino(_1068)) ,inl(..1068)) ,and(in0(..1068) ,neg~inlC.1068))))

or(and(inO(..1068) ,or(neg(inOC.1068)) ,neg(inlC..1068)))),
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and(or(neg(ino(..1068)) ,neg(iniC.1068))) .iniC..1068)))=
or(and(neg(inO(-iO68)) ,inl(-iO68)) ,and(inO(-1068) .neg~inlC..1068))))
By Boolean Expansion
<<< Success! Behavior of xor meets its specification.
>>xor previously verified >

component list is Cnand2)
Applying Rule lB to outcarry-8O4)
Applying Rule 2A to out(g3(..804))
nand2's output equation:

out(g3C-8O4)) :- or(neg(inO~g3C-8O4))) ,neg(inl(g3C-8O4))))
Applying Rule 6 to or~neg(inO(g3C.804))),neg(in(g3..804))))
Applying Rule 3 to neg(inO(g3C-8O4)))
Applying Rule lB to inO(g3C-8O4))
Applying Rule 2A to out(glC..804))
nand2's output equation:

out(giC..804)) :- or~neg~inO(glC.804))) .neg(inl~gl(..&04))))
Applying Rule S to or(neg~inO(glC-8O4))) ,neg(inlgl..80)4))))
Applying Rule 3 to neg(inO(glC.804)))
Applying Rule IA to inO(gl(C..04))
Value of neg~xC.804)):

neg(xL-8O4))
Applying Rule 3 to neg(inl~giC.804)))
Applying Rule IA to int(glC..804))
Value of neg(y(..804)):

neg(yC..804))
Value of or(neg(xC.804)) ,neg(yL-8O4))):

or(neg(xC..804)) ,neg(y(-.804)))
Value of neg~or(neg(xC-8O4)) ,neg(yL-8O4)))):

and(xC-8O4) ,yC-84))
Applying Rule 3 to neg(int(g3(..804)))
Applying Rule lB to inl(g3C.804))
Applying Rule 2A to out(g2L-8O4))
nand2's output equation:

out(g2C-8O4)) :- or(neg~inO~g2C.-804))) ,neg(ini(g2C.804))))
Applying Rule 5 to or(neg(inO(g2..804))) ,neg~ini(g2C..804))))
Applying Rule 3 to neg~inOg2..804)))
Applying Rule IA to inO(g2C..804))
Value of neg(cinC-8O4)):

neg(cinC-8O4))
Applying Rule 3 to neg(inl(g2C.804)))
Applying Rule lB to inl(g2C.804))
Applying Rule 2B to out~g4C.804))
xor's derived behavior:

out Cg4L-8O4)) :- or~and(inO(g4C.804)),
or(neg(inO~g4C-8O4))) ,neg(inl(g4C.804))))),
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and(or(neg(ino(g4C-8O4))) ,neg(ini(g4C.804)))),
iniCg4C.804))))

Applying Rule 5 to or~and(inO(g4C-8O4)),
or(neg(inO(g4L-8O4))) ,neg~inl(g4C.804))))),

and(or(neg(ino(g4C.804))) ,neg(inl(g4L-8O4)))),
il (g4(..804))))

Applying Rule 4 to and(inO(g4C-8O4)),
or(neg(ino(g4C-8O4))) ,neg(ini~g4C-8O4)))))

Applying Rule IA to inO(g4C-8O4))
Applying Rule S to or(neg(mnO~g4L-8O4))) ,neg~inl(g4L-8O4))))
Applying Rule 3 to neg(inO(g4C.804)))
Applying Rule IA to inO(g4C-8O4))
Value of neg(xC.8O4)):

neg~xC-8O4))
Applying Rule 3 to neg(inl~g4CSO04)))
Applying Rule IA to ini(g4C-8O4))
Value of neg(y(..804)):

neg(yC..804))
Value of or(neg(xL-8O4)) ,neg(yC.8O4))):

or(neg(xC-8O4)) ,neg(yC-8O4)))
Value of and~xL-8O4) ,or(neg~xcCBQ4)) ,neg(yC.804)))):

and(xC-8O4) ,or(neg(xC-8O4)) ,neg~yC.804))))
Applying Rule 4 to and(or~neg~ino(g4C.804))) ,neg(ini~g4L-8O4)))),

nl (g4C-8O4)))
Applying Rule 6 to or(neg(inO(g4C-8O4))) ,neg(inl(g4L-8O4))))
Applying Rule 3 to neg(ino(g4C-8O4)))
Applying Rule IA to inO~g4C.804))
Value of neg(xC.804)):

neg~xz-8O4))
Applying Rule 3 to neg(inI(g4C-8O4)))
Applying Rule IA to ini(g4C-8O4))
Value of neg(yC-8O4)):

neg(y C804))
Value of or(neg(xC.804)) ,neg(y(..804))):

or(neg(x(..804)) ,neg(y(..804)))
Applying Rule IA to inl(g4C.804))
Value of and(or(neg(xC-804)) .neg~yL-8O4))) ,y(..804)):

and(orneg(xC..804)) ,neg(yC-8O4))) ,yC..804))
Value of or(and(xL-8O4) ,or(neg(xC.804)) ,neg(yC-8O4)))),

and(or(neg(xC.804)) ,neg(yC-8O4))) ,yC-8O4))):
or(and(xC-804) ,or(neg~xC-8O4)) ,neg~yL-8O4)))),

and(or(neg~xC.804)) ,neg(yC-8O4))) ,yC-8O4)))
Value of neg(or(and(xL-8O4) ,or(neg(xC.804)) ,neg(yC..804)))),

and(or(neg(xC-8O4)) ,neg~yC.804))) ,yC.804)))):
and(or(neg(xC-8O4)) ,and(x(_8O4) ,yC.804))),
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or(and(x-8O4) ,yC.804)) ,neg(yC-804))))
Value of or~neg(cinC.804)).

and(or(neg(xL-8O4)) ,and(x-8O4) ,yC.804))),
or(and(xC-8O4) ,yC.8O4)) ,neg(yC..804))))):

or(neg(cin(..804)),
and(or(neg(xC.804)) ,and(xC-8O4) ,yC.8O4))),

or(and(xC.804) ,yC..804)) ,neg(yC-8O4)))))
Value of neg~or(neg(cinC.804)),

and(or(neg(x(.804)) ,and(xC.804) ,yC. 8O4))),
or(and(x-8O4) ,yC..804)) ,neg(yC.804)))))):

and(cinC.804) ,or~and~xC-8O4),
or(neg(xC-8O4)) ,neg(yC..804)))),

and(or(neg(xC.804)) ,neg(yC.804))),
y(-804))))

Value of or(&nd~xC.84),y(-.8O4)),
and~cinC.804),

or(and(x..804) ,or(neg~xL-8O4)) ,neg(yC.804)))),
and(orneg~x(-.804)) ,neg(yL-8O4))) ,yC.804))))):

or~and(xC..804),yC-8O4)),
and(cinC-8O4).

or(and(x(.804) ,or(neg(x(..804)) ,neg(yC.804)))),
and(or(neg(xC-8O4)) ,neg~yC..804))) ,yL-8O4)))))

Does or(and(xC-8O4),yL-8O4)),
and(cin..804),

or(and(xC-8O4) ,or(neg(x(..804)) ,neg(yC.804)))),
and(or(neg(xC-8O4)) ,nog~yC-8O4))) .yC.8O4)))))

or~and(x(..804) ,yC-8O4)) ,and~cinL-8O4) ,xor(x-8O4) ,yC-8O4))))
or(and(xC.804) ,yC..8O4)),

and(cinC-8O4),
or(and(xC.804) ,or(neg(xC.804)) ,neg(y(..804)))),

and~or(neg(xC-8O4)) ,neg(yC.804))) ,yC-8O4)))))=
or(and(xC.804) ,yC.804)) ,and(cinC-8O4) ,xor(xC.804) ,yC.8O4))))
By Boolean Expansion
Applying Rule iB to outsum..804)
Applying Rule 2B to out(g5C.804))
xor's derived behavior:

out(gS5L8O4)) :- or(and(inO(g5C-8O4)),
or~neg(ino~g5C.804))) ,neg(ini(g5L-8O4))))),

and~or(neg~ino~gSL-8O4))) ,neg(ini(g5C..804)))),
ini(g5L-8O4))))

Applying Rule S to or(and(inO(g5C-8O4)),
or(neg(inO(g5C.804))) ,neg~inl~gsC.804))))),

and~or(neg(inO(gSC.804))) ,neg~inl(gSC.804)))),
ini(g5C-8O4))))

Applying Rule 4 to and(inO(g5C-8O4)),
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or(neg~inO(g5C-8O4))) ,neg(inl(g5C.804)))))
Applying Rule lB to inO~g5L-8O4))
Applying Rule 2B to out(g4C-8O4))
xor's derived behavior:

out(g4C.804)) :a or(and(inO(g4(..804)),
or(neg(inO(g4C.804))),neg~ini(g4L-8O4))))).

and(or(neg(inO(g4C-8O4))) ,neg(inl Cg4C.804)))),
inI(g4C-8O4))))

Applying Rule 5 to or~and(inO(g4(..804)),
or(neg(ino(g4(..804))) ,neg(inl~g4C.804))))),

and(or(neg(inog4..804))) ,neg(inl~g4C.804)))),
il Cg4C.804))))

Applying Rule 4 to and~inO(g4C..804)),
or~neg(ino(g4C.804))) ,neg(inl (g4C-8O4)))))

Applying Rule IA to inO(g4L-8O4))
Applying Rule 5 to or~neg(inO(g4C.804))) ,neg(inl(g4Q-8O4))))
Applying Rule 3 to neg~inO(g4..804)))
Applying Rule IA to inQ~g4C-8O4))
Value of neg(xC.804)):

neg(xL-8O4))
Applying Rule 3 to neg(inl(g4..804)))
Applying Rule IA to inl(g4(..804))
Value of neg~y(..804)):

neg(yC.804))
Value of or(neg(xzC8O4)) ,neg(yC-8O4))):

or(neg(x(..804)) 5neg(yC-8O4)))
Value of and(xC.804) ,or(neg~xC..804)) ,neg(yC..804)))):

and(xC.804) ,or(neg(x(-.804)) ,neg(yC-8O4))))
Applying Rule 4 to and(or~neg(ino(g4L-8O4))) ,neg~inl(g4L-8O4)))),

nl (g4(..804)))
Applying Rule 5 to or(neg~inO(g4C-8O4))),neg(inl(g4C-8O4))))
Applying Rule 3 to neg(ino(g4C.804)))
Applying Rule lA to inO(g4L-8O4))
Value of neg(x..804)):

neg(xL-8O4))
Applying Rule 3 to neg~inl(g4C-804)))
Applying Rule lA to inl(g4L8O4))
Value of neg(yC..804)):

neg(y(..804))
Value of or(neg(xC-8O4)) ,neg(yL-8O4))):

or(neg(xL-8O4)) ,neg~yC. 804)))
Applying Rule IA to inl(g4(..804))
Value of and~or~neg(x(..804)) ,neg~yCSO04))) ,yC.804)):

and(or(neg(xC-8O4)) ,neg(yC-8O4))),yC-8O4))
Value of or(and(xC-8O4) ,or(neg(xC-8O4)) ,neg(yC.804)))),
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and(or(neg(x..804)) ,neg(yC-8O4))) ,yC.8O4))):
or(and(x(.804) ,or(nog(zC..804)) ,neg(yC-8O4)))),

and(or(neg(..804)) ,neg(yC.804))) ,yC..8O4)))
Applying Rule 6 to or~neg~inO~gS(.804))) ,neg(inl(gSC.804))))
Applying Rule 3 to neg(inO(gSC.804)))
Applying Rule lB to inO(gSC-8O4))
Applying Rule 2B to out(g4(..804))
xor'u derived behavior:

out(g4(-.804)) :- or~and(inO(g4L-8O4)),
or(neg(inO~g4L-8O4))) ,neg(inl(g4C.804))))),

and(or(neg(ino(g4(.804))) ,neg(inl(g4C.804)))),
in (g4C..804))))

Applying Rule 5 to or(and(inO(g4(..804)),
or~neg(inO(g4C.804))) ,neg(inl~g4C.804))))),

and(or(neg~inO(g4C.804))) ,neg(inl(g4C-8O4)))),
il Cg4C.804))))

Applying Rule 4 to and(inO(g4C..804)),
or(neg~inO(g4C.804))) ,neg(inl(g4C.804)))))

Applying Rule lA to inO(g4C.804))
Applying Rule 5 to or~neg~inO~g4CBO04))) ,neg~inl(g4C.804))))
Applying Rule 3 to neg(inO~g4L-8O4)))
Applying Rule lA to inO~g4L-8O4))
Value of neg(xL-8O4)):

neg(xf,-804))
Applyirg Rule 3 vo neg(inl(C'C84)))
Applying Rule IA to inl(g4C.804))
Value of neg(yC..804)):

neg~yC.804))
Value vf or(neg(x(..804)) ,neg(yC-8O4))):

or~neg(xC.804)) ,neg~yC.804)))
Value of and~xL-8O4) ,or~neg~xL-8O4)) .neg~yC..804)))):

and(x(..804) ,or~neg(xC-8O4)) ,neg(yC.804))))
Applying Rule 4 to and(or(neg~ino(g4C-8O4))) ,neg(inl(g4C-8O4)))) ,inl(g4L-8O4)))
Applying Rule 5 to or(neg(ino(g4C-8O4))) ,neg(inl(g4C.804))))
Applying Rule 3 to neg(inO~g4..804)))
Applying Rule lA to inO~g4C-8O4))
Value of neg(xC.804)):

neg(xC-8O4))
Applying Rule 3 to neg(inl(g4C-8O4)))
Applying Rule IA to inl~g4L-8O4))
Value of neg~yC-8O4)):

neg(y(-.804))
Value of or~neg(x(..804)) ,neg~yL-8O4))):

or(neg(xC-8O4)) ,neg(y(..804)))
Applying Rule IA to inl(g4C-804))
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Value of and(or(neg(x(..804)) ,neg(yLBO4))),y..804)):
and(or~neg(xC.804)) ,neg(yC-8O4))) ,yC-8O4))

Value of or(and(xC..804) .or(neg(xC-8O4)) ,nog(yC-8O4)))),
and(or(ueg(xzC8O4)) ,neg(yC-804))) ,y(..8O 4))):

or(and(xC.804) ,or~neg(x..804)) ,neg~yC.804)))),
and(or(neg(xC.804)) .neg(yC.804))) ,yC-8O4)))

Value of neg(or(and(x(.804) ,or(neg~xC-804)) ,neg(yC..804)))),
and(or(neg((-.804)) ,neg~yC-8O4))) ,yC-8O4)))):

and(or~neg(x(.804)) ,and(xCSO04) ,y(..804))),
or(and(xC.804) ,yLSO04)) ,neg(yC.804))))

Applying Rule 3 to neg(inl(gSC.804)))
Applying Rule IA to inI(g5C.804))
Value of neg(cin..804)):

neg(cinC.804))
Value of or(and(or(neg(x(.804)) ,and(xC-8O4) ,yC-84))),

or(and(,x(.804) ,yC.8O4)) ,neg(yC.804))))9
neg(cinCJ,304))):

or~and(or(neg,(xz8O4)) ,and(x(..804) ,yC.804))),
or(and(xC..804) ,y(..804)) ,neg(yC.804)))),

neg(cin(..804)))
Value of and(orand(x(-.804) ,or(neg(x(..804)) ,neg(yL-8O4)))),

and(or(neg(xC.804)) ,neg~y(..804))) ,yC-8O4))),
or(and(or(neg~x(_8O4)) ,and(x-8O4) ,yC.8O4))),

or(and~xC.804) ,yC.8O4)) ,neg(yC.804)))),
nog(cinC-8O4)))):

and(or(and(x..804) ,or(neg(xC.804)) ,neg~yC-8O4)))),
and~or(neg(xC.804)) ,neg(yC.804))) ,y(..8O4))),

or(and(or~neg(xzC8O4)) ,and(xzC8O4) ,y(_8O4))),
or(and(x..804) ,yC-8O4)) ,neg(yC.804)))),

neg(cinC.804))))
Applying Rule 4 to and~or~neg~ino(g5C_8O4))) ,neg(ini(g5C.804)))),

il (g5C.804)))
Applying Rule 5 to or(neg(inO(g5C-8O4))) ,neg~inl(g5C-8O4))))
Applying Rule 3 to neg(inO(g5C..804)))
Applying Rule lB to inO(gSC..804))
Applying Rule 2B to out(g4C-8O4))
xor's derived behavior:

out(4..804)) :- or(and(inO(g4(.804)),
or(neg~inO(g4L-8O4))) ,neg(inl(g4(_8O4))))),

and(or(neg(inOg4..804))) ,neg~inl (g4C.804)))),
nl (g4C-8O4))))

Applying Rule 5 to or(and(inO(g4C-804)),
or(neg(inO(g4L-8O4))) ,neg(inl~g4C.804))))),

and~or~neg(inO(g4C-8O4))) ,neg(inl~g4C.804)))),
ini(g4(..804))))
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Applying Rule 4 to and(inO(g4C-8O4)),

Appling ule A to or(neg(ino(g4..804))) ,neg(inl(g4C-804)))))

Applying Rule 5 to or(neg(inO~g4C-8O4))) ,neg(ini(g4..804))))
Applying Rule 3 to neg(inO~g4(..804)))
Applying Rule IA to inO(g4(-.804))
Value of neg(x(..804)):

neg(xC.804))
Applying Rule 3 to neg(inl(g4C-8O4)))
Applying Rule IA to inl(g4C-8O4))
Value of neg(yC-8O4)):

neg(y..804))
Value of or(neg~xC.804)) ,neg(yC-8O4))):

or(neg~x(..804)) ,neg~yC-8O4)))
Value of and~x(_8O4) ,or(neg(xL-8O4)) ,neg(yL-8O4)))):

and(xC.804) ,or(neg~xC..804)) ,neg(yC.804))))
Applying Rule 4 to and(or(neg(inO(g4C-8O4))) ,neg(inl(g4C.804)))),

il (g4C-8O4)))
Applying Rule 5 to or(neg(inO(g4C-84))),neg~in(g4..804))))
Applying Rule 3 to neg(inO(g4C.804)))
Applying Rule IA to inO~g4(..804))
Value of neg(x(..804)):

neg(x..804))
Applying Rule 3 to neg(inI(g4C-8O4)))
Applying Rule IA to inl(g4C-8O4))
Value of neg(yC..804)):

neg(yC.804))
Value of or~neg(x(,-804)) ,neg(yC.804))):

or~neg(zC..804)) ,neg(yL-8O4)))
Applying Rule IA to inl(g4C.804))
Value of and(or(neg(xL-8O4)) ,neg(y(..804))) ,yC.804)):

and(or(neg((.804)) ,neg(yC-8O4))) ,yC-8O4))
Value of or(and~xC-8O4) ,or(neg(xC-8O4)) ,neg~yC..804)))),

and(or~neg(xC.804)) ,neg~y(..804))) ,yL-8O4))):
or(and(xC-8O4) ,or(neg~xCSO04)) ,neg(yL-8O4)))),

and~or~neg(x(..804)) ,neg(y..804))) ,y(..804)))
Value of neg(or~and(x..804) ,or(neg(xC-8O4)) ,neg(y(..804)))),

and(or(neg(xCSO04)) ,neg(y(..804))) ,yL-8O4)))):
and~or(neg(x(.804)) ,and~xC-8O4) ,yC.804))),

or(and(xC-8O4) ,yL-84)) .neg(yC..804))))
Applying Rule 3 to neg~in(gS..804)))
Applying Rule IA to ini(gSC-8O4))
Value of neg(cinC.804)):

neg(cin(..804))
Value of or~and(or(neg(x..804)) ,and(x(_804) ,yC.804))),

B-18



or(mnd(xC.804) ,yC-8O4)) ,neg(yC.804)))),
neg(cinC-8O4))):

or(and(or(negx(.8C4)) ,and(x(_804) ,y(.804))),
or(and(xC.804) .yC.804)) ,neg(yL-8O4)))),

neg(cinL-8O4))
Applying Rule IA to int(g5C.804))
Value of and~or(and(or(neg(xC-8O4)) ,and~xC-8O4) ,yC-84))),

or(and(xC.8O4) .yC8O4)) ,neg(yC.804)))).j
neg(cin(-.804))),

cinC-8O4)):
and(or(and(or(neg(xC-8O4)) ,and(xCB04) ,yC...84)')),

or(and(x(..804) ,yC.804)) ,neg(yC.804)))),
neg(cin(..804))),

cin(-.804))
Value of or(and~or(and(x(.804) ,or(neg(xzC8O4)) ,neg(yC.804)))),

and(or(neg((-.804)) ,neg(yC-8O4))) ,yC.804))),
or(and(or(neg(xzC8O4)) ,and(zC(8O4) ,yL-84))),

or(and(xC-8O4) ,yC-84)) ,neg~yC.804)))),
neg(cinL-8O4)))),

and(or~and(or(neg(xC-8O4)) ,and~xL-8O4) ,yC.804))),
or(and(x(.804) ,yC..804)) ,neg(yL-8O4)))),

neg(cinC-8O4))),
cinC-8O4))):

or(and(or(and((.804) .or(neg~xC-8o4)) ,neg(yC.804)))),
and~or(neg(xzCSO4)) .neg(yL-8O4))) ,yC.8O4))),

or(and(or(neg((.804)) ,and(..804) ,yL-8O4))),
or(and(xC.804) ,yC-804)) ,neg(yC.804)))),

neg(cin(..804)))),
and(or(and(or(neg(x(.804)) ,and(xC..804) ,yL-8O4))),

or(and(x(..804) ,yL-8O4)) ,neg(yC..804)))),
neg(cinC.804))),

cinC-8O4)))
Does or(and(or(and(xC.804) ,or(neg(x..804)) ,neg(yC.804)))),

and(or(neg%'xC.804)) ,neg(y(..804))) ,yC..804))),
or(and(or(neg(xC.804)) ,and(x-8O4) ,yC-8O4))),

or(and~xzCSO4) .yC8O4)) .neg(y(..804)))),
neg(cinC-8O4)))),

and(or(and(or~neg(xC.804)) ,and(xC-8O4) ,yC-84))),
or(and~xC.804) ,yC.. 8O4)) ,neg~y(..804)))),

neg(cinC.804))),
cinC-8O4))) -

xor(xor~xC-8O4) ,yC.8O4)) ,cinC.804))
or(and~or(and(x..804) ,or(neg~xC.804)) ,aeg(yC.804)))),

and(or(neg(xC-8O4)) ,neg(yC..804))) yC-8O4))),
or~and(or(neg(xL-8o4)) ,and(xC..804) ,yC-8O4))),
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or(and(x(-.804) ,yC-8O4)) ,neg(yC.804)))),

neg(cin(..804)))),
and(or(and(or(neg(x(-.804)) ,and(x-8O4) ,yC..8 O4))),

or(and~x(_804) ,yC.8O4)) ,neg(yC-8O4)))),
neg(cin..804))),

cinC.804))) -
xor~xor(x(_8O4) ,yC-84)) ,cinC.804))
By Boolean Expansion
<<< Success! Behavior of faddxor meets its specification.
yes

I -halt.
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1* This file loads the appropriate files to verify a *
/* a fulladder with PROLOG-i. This is invoked by typing *

/*E'a:faddload'J.

?- Ea:ops''la:eval','a:dorbeh'.'a:derstate','a:xor','a:faddxor'].
?-C'a:boole2' , a:eqbeh' , a:verify').

Sample run for a full-adder circuit on PROLOG-1:

B: \>prolog

+--------------------------------------------

IMS-DOS Prolog-1 Version 2.2
ICopyright 1983 Serial number: 0001213
IExpert Systems Ltd.
IOxford U.K.

+--------------------------------------------

?- E'a:faddload'i.
a:ops consulted.
a:eval consulted.
a: derbeh consulted.
a: derat ate consulted.
a:xor consulted.
a: faddxor consulted.
a: boole2 consulted.
a: eqbeh consulted.
a:verify consulted.
a: faddload consulted.
?- verifyCf addxor).
>>> Attempting to verify faddxor>
>>nand2 primitive (needs no verification)>
>>nand2 previously verified >
>>nand2 previously verified >

>>> Attempting to verify xor>
>>nand2 previously verified >
>>nand2 previously verified >
>>nand2 previously verified >
>>nand2 previously vezified >

Applying Rule IB to out (.109)
Applying Rule 2A to out(g4C-109))
nand2's output equation:

out(g4C.109) := or(neg(ino(g4(.109))),neg(in(g4..109))))
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Applying Rule 6 to or(neg(inO~g4C.109))) ,neg(ini~g4C..109))))
Applying Rule 3 to neg(ino(g4(.109)))
Applying Rule lB to inO(g4ClO09))
Applying Rule 2A to out(g2ClO09))
nand2's output equation:

out(g2(..109)) :- or(neg(inO(g2..109))) ,neg~inl(g2C.109))))
Applying Rule S to or(neg(inO~g2(..i09))),neg(inl(g2Clo09))))
Applying Rule 3 to neg(inO(g2LlO09)))
Applying Rule IA to inO(g2(..109))
Value of neg(inO(-1O9)):

neg(inO(-lO9))
Applying Rule 3 to neg(ini(g2lO19)))
Applying Rule lB to inl(SV-lO9))
Applying Rule 2A to out(gILlO9))
nand2'u output equation:

out(glC.109)) :- or(neg(ino~glC..1O9)) ,neg~inl(gi(-1O9))))
Applying Rule 5 to or(neg(inO~gilO19))) .neg(inl(glC-109))))
Applying Rule 3 to neg(inO(gI(-1O9)))
Applying Rule 1A to inO~gl(-1O9))
Value of neg(inO(-lO9)):

neg~inO(-lO9))
Applying Rule 3 to neg(inl(gLC..09)))
Applying Rule IA to inl(gl(-..09))
Value of neg(inl(-lO9)):

neg(inl C 109))
Value of or(neg(inO(-iO9)) ,neg(inlC.109))):

or(neg(inO(-iO9)) ,neg(inl(-iO9)))
Value of neg(or(neg(inOC-109)) .neg(inl(-lO9)))):

and(inO(-iO9) ,inl(..109))
Value of or(neg(inO(.109)) ,and(inO(-iO9) ,ini(_109))):

or(neg~ino(-lO9)) ,and(inO(-1O9) ,inlC.109Y)))
Value of neg(or(neg(inO(.109)) ,and(inO(-lO9) ,inlC.109)))):

and(inO(-109) ,or(n'g(inO(-1O9)) .neg(inl(-1O9))))
Applying Rule 3 to neg(inl(g4Cl109)))
Applying Rule lB to ini(g4Cl109))
Applying Rule 2A to out(g3Cl109))
nand2's output equation:

Applying Rule 5 to or(neg(inO(g3ClO09))) ,neg(inl(g3ClO09))))
Applying Rule 3 to neg(ino(g3ClO09)))
Applying Rule lB to inO(g3Cl109))
Applying Rule 2A to out(gl(-lO9))
nand2's output equation:

out(gl(-lO9)) :- or(neg(in0(gl(-109))),neg(inl(gl(-lO9))))
Applying Rule 5 to or~neg(inO(gl(..09))),neg(inl(gl(-1O9))))
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Applying Rule 3 to neg(inO(gI(-lO9)))
Applying Rule IA to ino(gilO19))
Value of neg(inO(..109)):

neg(inQ(-109))
Applying Rule 3 to neg(inl(gi(-iO9)))
Applying Rule IA to ini(gl(-1O9))
Value of neg(inl(-109)):

neg(inl C..109))
Value of or(neg(inO(-109)) ,neg(inl(-iO9))):

or(neg(inO(-109)) ,neg(ini(-lO9)))

Value of neg(or(neg(inOCJO09)) ,neg~ini(-109)))):
and(inOC..109) ,inl (.109))

Applying Rule 3 to neg(inI(g3C..109)))
Applying Rule IA to ini(g3C-109))
Value of neg(ini(..109)):

neg~inilO19))
Value of or(and(in(-.109) ,inliO19)) ,neg~inI(-1O9))):

or~and(inQ(-1O9) ,iniC..109)) ,neg(ini(..109)))

Value of neg~or(and(inOC.109) ,ini(.109))neg(inl(-iO9)))):

and(or~negino(.109)) ,neg(inl(-lO9))) ,inlC..109))

Value of or(and(inO(-109) ,or(neg(in0(-1.09)),neg(in1C-109)))),
and~or(neg(ino(.109)) ,neg~inli-09))) ,inilO19))):

or(and(inO(-lO9) ,or(neg~inO(-iO9)) ,neg~inl(-109)))),

and(or~neg(ino(-lO9)) ,neg(ini(-iO9))) ,inlC.109)))

Does or(and(inO(-109) ,or(neg(inO(-iO9)) ,neg(inl(-109)))),

and(or(neginO(..109)) ,neg(inl(..109))) ,inslC...19)))

or(ana(inOC.109) ,or(neg~inO(-1O9)) ,neg(inl(-lO9)))),
and(or(neg(inoCIO09)) ,neg(inl(-iO9))) .inlC.109)))=

or~and(neg(ino(-lO9)) ,inlC..109)) ,and(inO..109) ,neg(inC..109))))

By Boolean Expansion
<<< Success! Behavior of xor meets its specification.

>>xor previously verified >
Applying Rule lB to outcarry(-IlS)
Applying Rule 2A to out(g3C..115))
nand2's output equation:

out(g3C.115)) := or~neg(in0(g3L-115)))neg~in(g3(-115))))
Applying Rule 5 to or(negcinO(g3C115))),neg~il(g3(.115))))
Applying Rule 3 to neg(inO(g3C115S)))
Applying Rule lB to inO(g3C-il5))

Applying Rule 2A to out~glC-liS))
nand2's output equation:

Applying Rule 5 to or(neg(inO(gl(..115))) ,neg(inl(gi(-1l5))))

Applying Rule 3 to neg(inO~gl(-llS)))
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Applying Rule IA to inO(glC..115))
Value of neg(x(..1i5)):

neg~x(-liS))
Applying Rule 3 to neg(inI~glC.115)))
Applying Rule IA to inl(gl(-liS))
Value of neg(yC.115)):

neg(y(-li5))
Value of or(neg(x(-.11S)) ,neg(y(-11S))):

or(neg(xC.I15)) ,neg~y(_llS)))
Value of neg~or(neg~x(-1l5)) .neg(yC.115)))):

and(x(..115) ,y(-1l5))
Applying Rule 3 to neg(inl(gU-115)))
Applying Rule lB to inl(g3Cl115))
Applying Rule 2A to out~g2C.115))
nand2's output equation:

out~g2(..115)) :a or(neg(inO(g2CllS))),neg(ini(g2(-115l))))
Applying Rule 5 to or(neg(inO(g2(-11))),neg~in(g2(-115))))
Applying Rule 3 to neg(inO~g2CliI6)))
Applying Rule 1A to inO(g2Cll56))
Value of neg(cinC.115)):

neg(cinC 115))
Applying Rule 3 to neg(ini(g2C-j15)))
Applying Rule lB to inl(g2C-115))
Applying Rule 2B to out(g4(-.115))
xor's derived behavior:

out(g4C-115)) := or(and(inO(g4(-115)),
or~neg(ino(g4Clls5))) ,neg(inl~g4C.115))))),

and(or~neg(inO(g4C.115))) ,neg(inl Cg4Q-115)))),
inl(g4C.,115))))

Applying Rule 5 to or(and(inO(g4L-115)),
or~neg(inO(g4C.115))) ,neg(inl(g4...ll))))),

and(or(negino(g4..115))) ,neg(inl(g4(-115)))),
inl(g4C.115))))

Applying Rule 4 to and(inO(g4C.115)),
or(neg(inO(g4CllS5))) ,neg(inl(g4..115)))))

Applying Rule 1A to inO(g4C-115))
Applying Rule 5 to or(neg(inO(g4(-j15))),neg(ini(g4(-115l))))
Applying Rule 3 to neg~ino~g4CllS5)))
Applying Rule IA to inO(g4C-115))
Value of neg~xC.116)):

neg~x(-ilS))
Applying Rule 3 to neg(ini(g4Cil1S)))
Applying Rule IA to inI(g4C-ilS))
Value of neg~yC-Il5)):

neg~y(..115))
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Value of or(neg(zC..11S)) ,neg~y(-ii5))):
or(neg(xC..11S)) ,neg(y...iS)))

Value of and(x(-15) ,or(neg(x..115)) ,neg(y(-115)))):
and(x(.115) ,or(neg(x(.iiS)) ,neg(y(-li5))))

Applying Rule 4 to and(or(neg(ino(g4C..1i5))),neg(ini~g4Cll15)))),
inI(g4..116)))

Applying Rule 6 to or(neg(izio~g4C.11S))),neg(ini(g4LilS5))))
Applying Rule 3 to neg(inO(g4C(i11)))
Applying Rule IA to inO(g4(..1iS))
Value of neg(xC.115)):

neg(xC.1iS))
Applying Rule 3 to neg(ini(g4..115)))
Applying Rule IA to ini(g4(..116))
Value of neg(y(-iiS)):

neg(y(-iiS))
Value of or~neg(xC..l±5)) ,neg~yC-IlS))):

or(neg(xC..115)) ,neg(yC..I5)))
Applying Rule IA to ini~g4CllS5))
Value of and~or(neg(x(-1lS)) ,neg(y(..115))) ,yC-1l5)):

and(or~neg(x..115)) ,neg(y...1))) ,y(-115))
Value of or(and(x(..i5) ,or(neg(xC-ii5)) ,neg(y(-ilS)))),

and(or(neg(x(.115)) ,neg(yC.115))) .y(-l5))):
or(and(x(..115) ,or(neg~x(-il5)) ,neg~yC..115)))),

and~or(neg(x(.115)) ,neg~yC..115))) ,yC.115)))
Value of neg(or(and(x..115) ,or(neg(x(-iiS)) ,neg(yC-1i5)))),

and(or(neg(x..ll5)) ,neg~y(..ilS))) ,yC-ll5)))):
and(or(neg(xC.1i5)) ,and(x(..iS) ,y(-il5))),

or(and(xC.115) ,yC.115)) ,neg(y(-115))))
Value of or(neg(cin(..115)),andor(neg(x...li)),and(xC..115),rC(i11))),

or~and(x..115) ,yC...l5)) ,neg~yC.115))))):
or(neg(cin..115)) ,and(or(neg(xz-115)) ,and(x(-115) ,yC.115))),

or(and(xz-lS) ,y(..1i5)) ,neg(yC.1lS)))))
Value of neg(or(neg(cin(-11S)),

and(or(neg(x..11.5)) ,and(x...l5) ,yC.1i5))),
or(and(xC-ilS) ,yLII15)) ,neg(y(-jlS)))))):

and(cin(-115) .or(and(x(-1i5) ,or(neg~xC..ii5)) ,neg(yC-ll5)))),
and(or(neg~xC-i15)),neg(y..115))) ,y(-ll5))))

Value of or(and~x(-iIS),y(-11S)),
and~cin(-ilS) ,or(and(x(-llS),or~neg(xC.115)) ,neg(yC-ll5)))),

and(or~neg(x(-il5)) ,neg~yC-1iS))) ,YC.1ls))))I,:
or(and(x(.115) ,y(-115)),

and(cin(-lS) ,or(and(xC(l11),or(neg(x(-.115)) ,neg(yC.115)))),
and(or(neg~x(-llS)) ,neg~yC..l15))) ,yC.11S)))))

Does or~and(xCllS) ,y(_1iS)),
and(cinC.115) ,or(and(x(-15) ,or(neg(xC.115)) ,neg(yC..115)))),
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and(or(neg(x(.115)) neg(y(-ll5))) ,y(-1iS)))))
or(and(xC-ii5) ,y(..iiS)) ,and(cin(-iS) ,xor(x(-iiS) ,y(-l))))

or(and(x(-iiS) .y(-ii)),
and~cin(-li5) ,or(and~xC.115),or(neg~x(.115)),negy..115)))),

and~or(rieg(xC.11S)) ,neg(y(-jiS))) ,y(-115)))))
or(and(x(-il5) .y(-lS)) ,and(cin(-is) ,xor(rC..15) ,yC-1llS))))
By Boolean Expans ion
Applying Rule lB to outsum(..lI4)
Applying Rule 2B to out(gS(-l14))
xor's derived behavior:

oruneg6inO1g5Lll:-)) negdining5C.114)))))
ador(neg(inO(gS(-.114))),neg(inl(g5C.114)))),

inl(gS(-il4))))

Applying Rule 5 to or(and(inO(g5Cii14)),
or~ueg(inO(g5Cll14))) ,neg(ini(g5C-il4))))),

and~or~neg(inO(gC...-114))) ,neg(ini(gC..114)))),
inl(gSC.114))))

App~ying Rule 4 to and~inO(gSC.114)),
or(neg~ino~gS(-ll4))) ,neg(inlg5...14)))))

Applying Rule lB to inO(g5C..114))
Applying Rule 2B to out(g4Cll14))
xor's derived behavior:

out(g4(..114)) :- or(and(inO~g4Cll14)),
or(neg(inO(g4Cll14))) ,neg(inl~g4C.114))))),

and(or(neg(ino(g4Cll14))) ,neg(inl(g4Cj114)))),
inl(g4C..114))))

Applying Rule 5 to or(and(inO~g4(.l14)),
or(neg~inO(g4Cll14))) ,neg(ini(g4C..114))))),

and(or(neg(inO(g4..114))) ,neg~ini~g4(-114)))),
inI(g4CllI4))))

Applying Rule 4 to and(inO(g4QllI4)),
or(neg(inO(g4Cll14))) ,neg(inl(g4Cj114)))))

Applying Rule IA to inO(g4Cll14))
Applying Rule 6 to or(neg(inO~g4(.l14))) ,neg(inl~g4Lll14))))
Applying Rule 3 to neg(inO(g4C.114)))
Applying Rule IA to inO(g4L-114))
Value of neg(x(-ll4)):

Applying Rule 3 to neg(ini(g4(..i14)))
Applying Rule IA to inl(g4C.114))
Value of neg(yC,.114)):

neg(yC..114))
Value of or(ne~x(.114)) ,neg~y(-ll4))):

or(neg(x(-ll4)) ,neg~y(-ll4)))
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Value of and(zC..114) ,or~neg(xz-il4)) ,neg(y(-114)))):
and(x(_114) ,or(neg(xC.114)) ,neg(yC.114))))

Applying Rule 4 to and(or(neg~inO(g4C-114))),neg(in~g4.114)))),

il (g4C..114)))
Applying Rule 5 to or(neg(inOg4..114))),negin(g4..114))))
Applying Rule 3 to neg(inO(g4(..114)))
Applying Rule IA to inO(g4(..114))
Value of neg(x(-1i4)):

neg(x(-il4))
Applying Rule 3 to neg(inl~g4Cll14)))
Applying Rule IA to inl(g4Lli14))
Value of neg(y(-114)):

neg(yC.114))
Value of or(neg(x(.114)) ,neg(y(.114))):

or(neg(xC.114)) .neg~y(-ll4)))
Applying Rule IA to inl~g4..114))
Value of and(or(neg(x(-ll4)) ,neg(y(-1i4))) ,y(-1i4)):

and(or(neg(x(.114)) ,neg(y(-ll4))) ,y(-ll4))
Value of or(and~xC.114) ,or(neg(x(-.114)) ,neg~yC.114)))),

and(or(neg(xC.114)) ,neg(y(..114))) ,yC..114))):
cor(and(x(-1i4) ,or(neg(x(..114)) ,neg(y(_i14)))),

and(or(neg(x(-114)) ,neg(y(-ll4))) ,yC..114)))
Applying Rule S to or(neg(inO(gS.114))),neg(in(gSC..114))))
Applying Rule 3 to neg(ino(gS(-.114)))
Applying Rule lB to inO(gS(..114))
Applying Rule 2B to out(g4..114))
xor's derived behavior:

(.t(g4CL14)) :- or(and~inO(g4..114)),

ador(neg(inO(g4(..114))) gneg(inl(g4(..114))))),

inl(g4..114))))
Applying Rule 5 to or(and(ino~g4Cll14)),

or(neg(inO(g4C.114))) ,neg(inl(g4C.114))))),
and(or~neg(inO(g4C.114))) ,neg~inlg4..114)))),

inl(g4Cll4))))
Applying Rule 4 to and(inO(g4(..114)),

or(neg(inO(g4(.114))) ,neg(inl(g4C..114)))))
Applying Rule lA to inO(g4(..114))
Applying Rule 5 to or(neg(inO(g4Cll14))),neg~inl(g4'C.114))))
Applying Rule 3 to neg(inO~g4C-114)))
Applying Rule IA to inO(g4Ll114))
Value of neg~xC.114)):

neg~x(..114))
Applying Rule 3 to neg(inl(g4Cll14)))
Applying Rule IA to inl(g4Cll14))
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Value of neg(y(-ii4)):
neg(y..114))

V.lue of or~neg(x(-.114)) neg(y(-ii4))):
or(neg~xz-il4)) ,neg(y(-li4)))

Value of and(x(-1l4) ,or(neg(x(-1l4)) ,neg(y(-1l4)))):
and(x..114) .or~neg(x(-ll4)) ,neg(y(-1l4))))

Applying Rule 4 to and(or(neg(inO(g4C.114))) ,neg(inI~g4C.114)))),
inI(g4C.114)))

Applying Rule 5 to or(neg(inO(g4C.114))) ,neg(inl(g4C-114))))
Applying Rule 3 to neg(inO~g4C.A14)))
Applying Rule IA to inO(g4C-114))
Value of neg~xC.114)):

neg(x C..114) )
Applying Rule 3 to neg(inl(g4..114)))
Applying Rule IA to inl~g4Cll14))
Value of neg(yCA114)):

neg(yC.114))
Value of or(neg(x(-114)) ,neg(yC.114))):

or(neg(x(-ll4)) ,neg~yC.114)))
Applying Rule IA to inl(g4(-.114))
Value of and(or(neg(x(-114)) ,neg(yC.114))) ,yC...14)):

and(or(neg(x(-lI4)) ,neg~yC.114))) ,yC.114))
Value of or(and(x(-114) .or(neg~xC..114)) ,neg(yC.114)))),

and~or(neg(x(.114)) .neg(y(..114))) ,yC..114))):
or(andx(-.114) ,or~neg(x(..114)) ,neg(yC...14)))).

and(or(neg(xC.114)) ,neg(y(..114))) ,yC-i14)))
Value of neg~or(and(xf,-14) ,or~neg(x(_.114)) ,neg(yC..114)))),

and(or(neg(x(-ll4)) ,neg(y(-ll4))) ,y(-l4)))):
and(or~neg(x(.114)) ,and~x(-l4) ,yC...l4))),

or(and(x(.114) ,yC-ll4)) ,neg(y(-114))))
Applying Rule 3 to neg(inl(gS(-il4)))
Applying Rule IA to inl(g5C.114))
Value of neg~cinC..114)):

neg (cm C..114) )
Value of or(and(or(neg(x(-1l4)) ,and(x(..114) ,yC..114))),

or(and(xC.114) ,yC..114)) ,neg(y(-.14)))),
neg(cin(-il4))):

or~and~or(neg(xC.114)) ,and(x(..114) ,yC.114))),
or(and(xC.114) ,y(..114)) ,neg(y(-l14)))),

neg(cinC..114)))
Value of and(or(and~x(-1I4),or(neg(x(-14)),negy.114)))),

and~or(neg(x(-1i4)) ,neg(y(..114))),

or(and(or(neg(x..114)) ,and(zC..114) ,y(_il4))),
or(and(xC.114) ,y(-ll4)),
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neg~y..114)))),
neg(cin(-ii4)))):

and(or(neg(xC.114)) ,neg~yC.114))).
y(-1i4))),

or(and(or~neg(x(-114)) ,and(x(..114) ,y(-ii4))),
or~and~xC.114) ,y(..114)),

neg(yC..114)))).
neg(cin(..114))))

Applying Rule 4 to and(or(neg(ino(g5Ci114))) ,neg~inl(g5CJ114)))),

ini(g5(..114)))
Applying Rule 6 to or(neg(inO(gS(-..14))),neg(inl(g5C.114))))
Applying Rule 3 to neg(inO(gSC-1i4)))
Applying Rule lB to inO(g5(..114))
Applying Rule 2B to out(g4Cll14))
xor's derived behavior:

out(g4C..1i4)) :- or~and~inO(g4C-1i4)),
or(neg~inO~g4Lll14))) ,neg(inl(g4Cj114))))),

and(or(neg(ino(g4C.114))),neg(ini(g4CJ114)))),
inl(g4Cll14))))

Applying Rule 5 to or(and(inO(g4C.A14),
or(neg~inO~g4(J.14))) ,neg~ini(g4C-114))))),

and(or(neg(inO(g4(.114))) ,neg(inl.(g4C.1i4)))),
inl(g4LlIi4))))

Applying Rule 4 to and~inO(g4C.114)),
or(neg(inO(g4C-114))) ,neg(inl~g4Cll14)))))

Applying Rule IA to inO(g4C-114))
Applying Rule 5 to or(neg(inO(g4Cll14))),neg(inl(g4Cli14))))
Applying Rule 3 to neg(inO(g4(.114)))
Applying Rule IA to inO~g4C.114))
Value of nog(xz-ll4)):

neg(xC.114))
Applying Rule 3 to neg(inl(g4C.114)))
Applying Rule IA to inl(g4Cl114))
Value of neg(y(..114)):

neg~y(-1l4))
Value of or(neg(x(-il4)) ,neg~yC.114))):

or(neg(x(..114)) ,neg(y(-ll4)))
Value of and(xC.114) ,or(neg(x(-1i4)) ,neg~yC..114)))):

and(x(..114) ,or(neg(x..114)) ,neg~yC..114))))
Applying Rule 4 to and~or(neg(ino(g4C..114))),neg(ini(g4Lll14)))),

inl(g4C..114)))
Applying Rule 5 to or(neg(inO(g4C.114))),negin(g4..114))))
Applying Rule 3 to neg~ino(g4Cll14)))
Applying Rule IA to inO(g4Cl114))
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Value of neg~xz-li4)):
neg~xC.114))

Applying Rule 3 to neg(inI(g4C-1I4)))
Applying Rule IA to ial(g4CA14))
Value of neg(y(-.114)):

neg(y(..1i4))
Value of or(neg(x(..114)) ,neg(yC-1I4))):

or~neg(xz-ll4)) ,neg(y..114)))
Applying Rule IA to inl(g4C-114))
Value of and(or(neg(x(-.114)) .neg(y(-114))) ,yC..ll4)):

and~or~neg(xC.114)) ,neg(y(-114))) ,yC-l14))
Value of or(and~x(-.114) ,or(neg(x(-.114)) ,neg(y(-114)))),

and~or(neg(x(.114)) ,neg(yC..114))) ,y(-ll4))):
or(and(x(-1l4) ,or~neg(xC.114)) .neg(yC..114)))),

and~or(neg(x(..114)) ,neg~y(-114))) ,y(..1l4)))
Value of neg(or(and~x(-1l4) ,or~neg(x..114)) ,neg(yC..114)))),

and(or~neg(xC.114)) ,and(xz-ll4) ,y(-14))),
or~and~x(..114) ,yC.114)) ,neg~y(-ll4))))

Applying Rule 3 to neg(inl~gS(-1l4)))
Applying Rule IA to inl(g5(..114))
Value of neg(cinC.114)):

neg(cinC.114))
Value of or(and(or(neg(x..114)) ,and(xC.114) ,y(..1i4))),

or(and~xC..114) ,y(..114)) ,neg(yC.114)))),
neg(cinC-1l4))):

or~and(or(neg~xC.114)) ,and(zC..114) ,y(-114))),
or(and(x(-ll4) ,y(-114)) ,neg(yC.I14)))),

neg(cin(-1l4)))
Applying Rule IA to inl(g5C.114))
Value of and(or~and(or(neg(x..114)) ,and~x(-114) 1yC.114))),

or(and~xC-1l4) ,y(-14)) ,neg(y(-ll4)))),
neg(cinC..114))),

cinC.114)):
and(or(and(or(neg(xC.114)) ,and(x(..114) ,y(..114))),

or(and(zC..114) ,y(-ll4)) ,neg(yC.114)))),
neg(cin(-1i4))),

cinC-114))
Value of or(and(or~and(x(.114) ,or(neg(x(-li4)) ,neg(yC-114)))),

and~or(neg(xC.114)) ,neg(y(..I14))) ,y(-li4))),
or(and(or(neg(xC-114)) .and(xC.114) ,y(-lI4))),

or(and(x(.114) ,yC.114)) ,neg(yC..114)))),
neg(cin(-114)))),

and(or(and(or~neg(x(-1I4)) ,and(xC.114) ,yC-1l4))),
or~and(x(_l14) ,y(-.114)) ,neg(y(-114)))),

B-30



neg(cinC..114))),
cinC..114))):

or~and(or(and(xC.114) ,or(neg(x(-ii4)) ,neg(y(-1i4)))),
and(or(neg(xC.114)) .neg~y(-ll4))) ,yC..1l4))),

or(and(or(neg(xCA114)) ,and(xC.114) .yC..114))),
or(and(x(-.114) ,y(..l14)) ,neg(y(-ll4)))),

neg(cinC.114)))),
and(or(and(or(neg(xC.114)) ,and(x(_i14) ,y(..1l4))),

or(and(zC..114) ,yC.114)) ,neg(yC.114)))),
neg(cin(..114))),

cinC.1i4)))
Does or~and(or(and(x(-ll4) .or(neg(x(-li4)) ,neg(y(..i14)))),

and~or(nog(x(-1l4)) ,neg(y(..114))) ,yC..1i4))),
or(and(or(neg~xC.114)) .and(x(-1l4) ,yC-l14))),

or(and~xC.114) ,y(-il4)) ,neg(yC...14)))).
neg(cinL.114)))),

and~or(and(or(neg~xC.114)) ,and(x(..114) ,yC.J14))),
or(and~xC.114) ,yC4114)) ,neg(yC.114))))I

neg(cin(..114))),
cin(-il4)))=

xor(xor(x(-114) ,yC-i14)) ,cin(..114))

Error number: 83 /* stack space exceeded Error *
No error file
Evaluation Aborted
?-halt.

Notice that the fulladder was unable to complete on Prolog-1. This is due to in-

sufficient stack space while determining the equivalence of the specified and derived sum

output. Quintus Prolog had no such problem and it would appear Prolog-1 has outlived

its usefulness for this project.
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